Finite Automata

Part Two

Announcements

 Practice midterm solutions available.
 Second practice midterm available.

 Midterm review session this Saturday,
October 27 at 2PM in Gates 104.

« Come with questions!
 Leave with answers!

 Problem Set 3 and Problem Set 4 Checkpoints
graded; will be returned at end of lecture.

A Friendly Reminder

VY goes with -

d goes with A

Finite Automata

DFAs, Informally

« A DFA is defined relative to some
alphabet .

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in the alphabet.

e This is the “deterministic” part of DFA.
 There is a unique start state.

 There may be multiple accepting states.

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

1

’O,
start 0 0
o) (&,

1

1

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered characters of w are O }

start 0
0, 1
1
<o

More Elaborate DFASs

L ={w|wisa C-style comment }
Suppose the alphabet is

2={{a */}

Try designing a DFA tor comments:

Some Test cases:

ACCEPTED REJECTED
/*a*/ /**
/**/ /**/a
/***/ aaa/**/

/*aaa*aaa*/ /*/

More Elaborate DFASs

L ={w|wisa C-style comment }

More Elaborate DFASs

L ={w|wisa C-style comment }

More Elaborate DFASs

L ={w|wisa C-style comment }

start @ / 0

More Elaborate DFASs

L ={w|wisa C-style comment }

More Elaborate DFASs

L ={w|wisa C-style comment }

RORORO}
a, /

More Elaborate DFASs

L ={w|wisa C-style comment }

tart *
a, /

More Elaborate DFASs

L ={w|wisa C-style comment }

tart *
a, / *

More Elaborate DFASs

L ={w|wisa C-style comment }

tart *
ROROROFRORRO
a, / *

More Elaborate DFASs

L ={w|wisa C-style comment }

tart *
ROROROFRORRO
a, / *

More Elaborate DFASs

L ={w|wisa C-style comment }

More Elaborate DFASs

L ={w|wisa C-style comment }

More Elaborate DFASs

L ={w|wisa C-style comment }

More Elaborate DFASs

L ={w|wisa C-style comment }

More Elaborate DFASs

L ={w|wisa C-style comment }

More Elaborate DFASs

L =1{ w]|wis alegal email address }

More Elaborate DFASs

L =1{ w]|wis alegal email address }

Tabular DFAs

1 0

A~
Lo RORORC
A a2

Tabular DFAs

: 0

N 0 N 1D 0L

tt GJ
0, 1

0 1

Tabular DFAs
0

Tabular DFAs
0

Tabular DFAs
0

Tabular DFAs
0

Tabular DFAs
0

Tabular DFAs
0

Tabular DFAs
0

Tabular DFAs
0

Tabular DFAs
0

Tabular DFAs
0

The star indicates
That This is an q2 q3 qo

accepting state,

Code? In a Theory Course?

int kTransitionTable[kNumStates][kNumSymbols] = {
{OI OI 11 31 71 1! }I

I

bool kAcceptTable[kNumStates] = {
false,
true,
true,

I

bool SimulateDFA(string input) {
int state = 0;
for (char ch: input)
state = kTransitionTable[state][ch];
return kAcceptTable[state];

The Complexity of Addition

A O
- 1O O
O|l A A

Our Alphabet

The Complexity of Addition

Ao -
OO O
- | = O
Ao -

The Complexity of Addition

-~ O O
Ol A
- [= O
-~ O O
Ol A

The Complexity of Addition

-~ | O O
Ol A
- [= O
-~ O O
Ol A

The Complexity of Addition

-~ | O O
Ol
-~ | = O
-~ | O O
Ol a

The Complexity of Addition

-~ O O
Ol A
- [= O
-~ O O
Ol A

The Complexity of Addition

-~ O O
Ol A
- [= O
-~ | O O
Ol A

The Complexity of Addition

-~ | O O
Ol a
-~ | = O
-~ | O O
Ol

The Complexity of Addition

-~ O O
Ol A
- [= O
-~ O O
Ol A

The Complexity of Addition

- 1O O
OO -
Ol

The Complexity of Addition

- 1O O
1O -
O |l =

The Complexity of Addition

- O O
OO -
O |l =

The Complexity of Addition

- 1O O
olo -~
Ol a A

The Complexity of Addition

- 1O O
OO -
Ol

—_] O =

—_] = 0O

o1 OO

QO I

o
OO 1 O nd
O~ I
— O I
<,
<

R1

— — 1 O OO I -
(@)
OO 1 O nd
O v I
— O I
<,
$

O+~ 1 O

— O 1 O
— v | -
nd
— — 1 O OO I -
o
OO 1 O nd
O v I
— O I
»N\@\

O+~ 1 O

— O 1 O
— v | -
nd
— — 1 O OO I -
o
OO 1 O nd
O v I
— O I
»N\@\

OO 1 O
O~ I
— O I

RO

— O 1 O
s v |
— — 1 O
oo 1 O
O v I

— O I

— O 1 O
s v |
— — 1 O
oo 1 O
O v I

— O I

Q1 =

QI =

_] =

o1 O =
o1 =0

-1 OO

o1 O -
o1 =0

Q1 =

QI =

_] =

o1 O =
o1 =0

-1 OO

o1 O -
o1 =0

A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where

A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where

 Qis a set of states.

A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where

 Qis a set of states.
« 2 is an alphabet.

A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where
 Qis a set of states.
« 2 is an alphabet.
e 0:0Q X 2 - Qis the transition function.

A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where
 Qis a set of states.
« 2 is an alphabet.
e 0:0Q X 2 - Qis the transition function.

A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where
 Qis a set of states.
« 2 is an alphabet.
e 0:0Q X 2 - Qis the transition function.

0 1
9, d; 9,
g, g, 4, 6 is a tunction, so fThere must
be exactly one fransition defined
92 95 Y |
for each state/symbol pair,
q; d; d,

A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where

Qs a set of states.

« 2 is an alphabet.

e 0:0Q X 2 - Qis the transition function.
. g, € Q is the start state.

A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where
Qs a set of states.
« 2 is an alphabet.
e 0:0Q X 2 - Qis the transition function.
. g, € Q is the start state.

« F C Q is a set of accepting states.

A Formal Definition of Acceptance

- Given a DFA D = (Q, %, 6, q, F), we can

formally define what it means for D to
accept a string w € x*,

 Idea: Define a function 6* : 2* - Q that
says what state we end up in if we run
the DFA on a given string.

e This function represents the effect of
running the computer on a given input.

A Formal Definition of Acceptance

 Notation: If w is a string and a is a character,
then wa is the string formed by appending a to w.

- Given a DFA (Q, %, 0, q,, F), 6* is defined
recursively.

. OF (8) — qo
 Running the automaton on € ends in the start state.

e 0% (wa) = 6(6*(w), a)

« Running on wa is equal to running the automaton
on w, then following the transition for a.

A Formal Definition of Acceptance

» Using our O* function, we can formally
define the language of a DFA.

. Let D = (Q, %, 6, q, F) be a DFA.

e Define AD) ={weX*|0*(w) €F}

« The set of strings w that cause the DFA to
end up in an accepting state.

So What?

« We now have a mathematically rigorous
way of defining whether a DFA accepts a
string.

 We can try making changes to DFAs and
can formally prove how those changes
transform the language of the DFA.

A language L is called a regular language
i1ff there exists a DFA D such that AD) = L.

The Complement of a Language

 Given a language L C X*, the complement
of that language (denoted L) is the
language of all strings in 2* not in L.

 Formally:
L={w|weXZ*anwe¢lL}

The Complement of a Language

 Given a language L C X*, the complement
of that language (denoted L) is the
language of all strings in 2* not in L.

 Formally:
L={w|weX*aAwé¢L}

The Complement of a Language

 Given a language L C X*, the complement
of that language (denoted L) is the
language of all strings in 2* not in L.

 Formally:
L=3*-L

The Complement of a Language

 Given a language L C X*, the complement
of that language (denoted L) is the
language of all strings in 2* not in L.

 Formally:
L=3*-L

Complementing Regular Languages

» Recall: A regular language is a
language accepted by some DFA.

« Question: If L is a regular language, is L
a regular language?

- If the answer is “yes,” then there must be
some way to construct a DFA for L.

 If the answer is “no,” then some
language L can be accepted by a DFA,
but L. cannot be accepted by any DFA.

Complementing Regular Languages

L={we{0,1}*| wcontains 00 as a substring }
1

0
start 0 0 \
©)) &

1

, 1

Complementing Regular Languages

L={we{0,1}*| w contains 00 as a substring }
1

0
Stan_@OG\ :
0 1
1 _/

L={we{0,1}* | w does not contain 00 as a substring }

, 1

Complementing Regular Languages

L={we{0,1}*| wcontains 00 as a substring }

1
start 0
)
1

L={we{0,1}* | w does not contain 00 as a substring }
1

start 0

1

0, 1

®
0)

®
o)

Complementing Regular Languages

L =1{ w]|wis alegal email address }

Complementing Regular Languages

L = { w| wis not a legal email address }

Complementing Regular Languages

L =1{ w]| wis not alegal email address }

Constructions on Automata

« Much of our discussion of automata will
consider constructions that transform
one automaton into another.

 Exchanging accepting and rejecting
states is a simple construction sometimes
called the complement construction.

* Does this construction always work?

« How would we prove it?

Theorem: If D = (Q, %, 0, q,, F) is a DFA with language AD),
then the DFA D' = (Q, %, 6, q,, Q - F) has language AD).

Theorem: If D = (Q, %, 0, q,, F) is a DFA with language AD),
then the DFA D' = (Q, %, 6, q,, Q - F) has language AD).

Proof: By definition, AD') ={we X*|0*(w) € Q-F }. So

AD') ={weX*|b*¥(w) € QAO¥(w) € F}
AD') ={weX*|d*(w)eQ }-{weX*|b*w) €F}

Since 6* : 2* = Q, any string w € 2* satisfies 6*(w) € Q. Thus
AD)Y={weX*|weZXZX}-{weX*|0¥w) eF}
AD') =2*-{weZX*|d%w) eF}
AD') = 2* - AD)
AD') = AD). &

Closure Properties

. If L is a regular language, L is a regular
language.

 If we begin with a regular language and
complement it, we end up with a regular
language.

» This is an example of a closure property of
regular languages.

 The regular languages are closed under
complementation.

« We'll see more such properties later on.

N FAS

N FASs

« An NFA is a

e Nondeterministic
 Finite
e Automaton

 Conceptually similar to a DFA, but
equipped with the vast power of
nondeterminism.

(Non)determinism

A model of computation is deterministic if at
every point in the computation, there is exactly
one choice that can make.

 The machine accepts if that series of choices
leads to an accepting state.

A model of computation is nondeterministic if
the computing machine may have multiple
decisions that it can make at one point.

 The machine accepts if any series of choices
leads to an accepting state.

A Simple NFA

A Simple NFA

%, has Two Transitions

detined on 1

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

A Simple NFA

AARARAARARAWWWWWW

£)

(,,/7??' S~—,

WYYWEE[EEEE[HAAHMAM

A More Complex NFA

start ..e
0, 1

A More Complex NFA

start
O ON
0, 1 T

It a NFA needs fo make a
Transition when no transition
exists, The automaton dies and
that particular path rejects.

A More Complex NFA

start ..e
0, 1

A More Complex NFA

start
D,
0, 1

A More Complex NFA

start
@, ©
0, 1

o ot

A More Complex NFA

start
@, ©
0, 1

CEEED

A More Complex NFA

start
©,®
0, 1

CEEED

A More Complex NFA

start
©,®
0, 1

oot

A More Complex NFA

start o 0
) O
0, 1

Oh no! There's no
transition defined!

oot

A More Complex NFA

start ..e
@ | @ | '
0, 1

oot

A More Complex NFA

start
@, ©
0, 1

o ot

A More Complex NFA

start
@, ©
0, 1

CEEED

A More Complex NFA

start
@, ©
0, 1

oot

A More Complex NFA

start
@, ©
0, 1

CEEED

A More Complex NFA

start
©,®
0, 1

CEEED

A More Complex NFA

start
©,®
0, 1

oo it

A More Complex NFA

start ..e
@ | @ | '
0, 1

oo it

A More Complex NFA

start ..e
0, 1

A More Complex NFA

start ..e
0, 1

A More Complex NFA

— 7 I 1= N
AT
YYYYYYEEEEEEEEAAAAAAAAA

Intuiting Nondeterminism

e Nondeterministic machines are a serious
departure from physical computers.

« How can we build up an intuition for
them?

 Three approaches:

 Tree computation
 Perfect guessing
 Massive parallelism

Tree Computation

Tree Computation

Tree Computation

Tree Computation

Tree Computation (aq,
: o

Tree Computation (aq,
: o

Tree Computation (aq,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Tree Computation (o,

Nondeterminism as a ITree

« At each decision point, the automaton
clones itself for each possible decision.

e The series of choices forms a directed,
rooted tree.

« At the end, if any active accepting states
remain, we accept.

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

Perfect Guessing

« We can view nondeterministic machines as having
Magic Superpowers that enable them to guess
the correct choice of moves to make.

« Idea: Machine can always guess the right choice if
one exists.

 No physical analog for something of this sort.

* (Those of you thinking quantum computing - this is not
the same thing. We actually don't fully know the
relation between quantum and nondeterministic

computation.)

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

Massive Parallelism

« An NFA can be thought of as a DFA that
can be in many states at once.

 Each symbol read causes a transition on
every active state into each potential state
that could be visited.

 Nondeterministic machines can be thought
of as machines that can try any number of
options in parallel.

* No fixed limit on processors; makes multicore
machines look downright wimpy!

So What?

 We will turn to these three intuitions for
nondeterminism more later in the quarter.

 Nondeterministic machines may not be feasible, but
they give a great basis for interesting questions:

 Can any problem that can be solved by a
nondeterministic machine be solved by a deterministic
machine?

 Can any problem that can be solved by a
nondeterministic machine be solved efficiently by a
deterministic machine?

 The answers vary from automaton to automaton.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

e-Transitions

 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.

A Formal Definition of NFAs

- Formally, an NFA is a 5-tuple (Q, %, 6, q,, F) where

e Qs a set of states.
« 2 is an alphabet.

c 6:Q X (2 U {e}) » ©(Q) is the transition function.
« d, € Qis thg start stage.

« F C Q is aget of accepti tes.

Note that the codomain is

Note fhe domain sets of states 1o allow for
allows for e—moves multiple fransitions,

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250

