Finite Automata

Part Two



Announcements

 Practice midterm solutions available.
 Second practice midterm available.

 Midterm review session this Saturday,
October 27 at 2PM in Gates 104.

« Come with questions!
 Leave with answers!

 Problem Set 3 and Problem Set 4 Checkpoints
graded; will be returned at end of lecture.



A Friendly Reminder

VY goes with -

d goes with A



Finite Automata



DFAs, Informally

« A DFA is defined relative to some
alphabet .

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in the alphabet.

e This is the “deterministic” part of DFA.
 There is a unique start state.

 There may be multiple accepting states.



Recognizing Languages with DFAs
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Recognizing Languages with DFAs
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More Elaborate DFASs

L ={w|wisa C-style comment }
Suppose the alphabet is

2={{a */}

Try designing a DFA tor comments:

Some Test cases:

ACCEPTED REJECTED
/*a*/ /**
/**/ /**/a
/***/ aaa/**/

/*aaa*aaa*/ /*/
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Tabular DFAs
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Code? In a Theory Course?

int kTransitionTable[kNumStates][kNumSymbols] = {
{OI OI 11 31 71 1! }I

I

bool kAcceptTable[kNumStates] = {
false,
true,
true,

I

bool SimulateDFA(string input) {
int state = 0;
for (char ch: input)
state = kTransitionTable[state][ch];
return kAcceptTable[state];



The Complexity of Addition
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A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where
 Qis a set of states.
« 2 is an alphabet.
e 0:0Q X 2 - Qis the transition function.
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A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where
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A Formal Definition of DFASs

- Formally, a DFA is a 5-tuple (Q, %, 0, q,, F)
where
Qs a set of states.
« 2 is an alphabet.
e 0:0Q X 2 - Qis the transition function.
. g, € Q is the start state.

« F C Q is a set of accepting states.



A Formal Definition of Acceptance

- Given a DFA D = (Q, %, 6, q, F), we can

formally define what it means for D to
accept a string w € x*,

 Idea: Define a function 6* : 2* - Q that
says what state we end up in if we run
the DFA on a given string.

e This function represents the effect of
running the computer on a given input.



A Formal Definition of Acceptance

 Notation: If w is a string and a is a character,
then wa is the string formed by appending a to w.

- Given a DFA (Q, %, 0, q,, F), 6* is defined
recursively.

. OF (8) — qo
 Running the automaton on € ends in the start state.

e 0% (wa) = 6(6*(w), a)

« Running on wa is equal to running the automaton
on w, then following the transition for a.



A Formal Definition of Acceptance

» Using our O* function, we can formally
define the language of a DFA.

. Let D = (Q, %, 6, q, F) be a DFA.

e Define AD) ={weX*|0*(w) €F}

« The set of strings w that cause the DFA to
end up in an accepting state.



So What?

« We now have a mathematically rigorous
way of defining whether a DFA accepts a
string.

 We can try making changes to DFAs and
can formally prove how those changes
transform the language of the DFA.



A language L is called a regular language
i1ff there exists a DFA D such that AD) = L.
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Complementing Regular Languages

» Recall: A regular language is a
language accepted by some DFA.

« Question: If L is a regular language, is L
a regular language?

- If the answer is “yes,” then there must be
some way to construct a DFA for L.

 If the answer is “no,” then some
language L can be accepted by a DFA,
but L. cannot be accepted by any DFA.



Complementing Regular Languages
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Constructions on Automata

« Much of our discussion of automata will
consider constructions that transform
one automaton into another.

 Exchanging accepting and rejecting
states is a simple construction sometimes
called the complement construction.

* Does this construction always work?

« How would we prove it?



Theorem: If D = (Q, %, 0, q,, F) is a DFA with language AD),
then the DFA D' = (Q, %, 6, q,, Q - F) has language AD).




Theorem: If D = (Q, %, 0, q,, F) is a DFA with language AD),
then the DFA D' = (Q, %, 6, q,, Q - F) has language AD).

Proof: By definition, AD') ={we X*|0*(w) € Q-F }. So

AD') ={weX*|b*¥(w) € QAO¥(w) € F}
AD') ={weX*|d*(w)eQ }-{weX*|b*w) €F}

Since 6* : 2* = Q, any string w € 2* satisfies 6*(w) € Q. Thus
AD)Y={weX*|weZXZX}-{weX*|0¥w) eF}
AD') =2*-{weZX*|d%w) eF}
AD') = 2* - AD)
AD') = AD). &




Closure Properties

. If L is a regular language, L is a regular
language.

 If we begin with a regular language and
complement it, we end up with a regular
language.

» This is an example of a closure property of
regular languages.

 The regular languages are closed under
complementation.

« We'll see more such properties later on.
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N FASs

« An NFA is a

e Nondeterministic
 Finite
e Automaton

 Conceptually similar to a DFA, but
equipped with the vast power of
nondeterminism.



(Non)determinism

A model of computation is deterministic if at
every point in the computation, there is exactly
one choice that can make.

 The machine accepts if that series of choices
leads to an accepting state.

A model of computation is nondeterministic if
the computing machine may have multiple
decisions that it can make at one point.

 The machine accepts if any series of choices
leads to an accepting state.
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A Simple NFA
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A More Complex NFA
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Intuiting Nondeterminism

e Nondeterministic machines are a serious
departure from physical computers.

« How can we build up an intuition for
them?

 Three approaches:

 Tree computation
 Perfect guessing
 Massive parallelism
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Nondeterminism as a ITree

« At each decision point, the automaton
clones itself for each possible decision.

e The series of choices forms a directed,
rooted tree.

« At the end, if any active accepting states
remain, we accept.
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Perfect Guessing

« We can view nondeterministic machines as having
Magic Superpowers that enable them to guess
the correct choice of moves to make.

« Idea: Machine can always guess the right choice if
one exists.

 No physical analog for something of this sort.

* (Those of you thinking quantum computing - this is not
the same thing. We actually don't fully know the
relation between quantum and nondeterministic

computation.)
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Massive Parallelism

« An NFA can be thought of as a DFA that
can be in many states at once.

 Each symbol read causes a transition on
every active state into each potential state
that could be visited.

 Nondeterministic machines can be thought
of as machines that can try any number of
options in parallel.

* No fixed limit on processors; makes multicore
machines look downright wimpy!



So What?

 We will turn to these three intuitions for
nondeterminism more later in the quarter.

 Nondeterministic machines may not be feasible, but
they give a great basis for interesting questions:

 Can any problem that can be solved by a
nondeterministic machine be solved by a deterministic
machine?

 Can any problem that can be solved by a
nondeterministic machine be solved efficiently by a
deterministic machine?

 The answers vary from automaton to automaton.
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 NFAs have a special type of transition called
the e-transition.

 An NFA may follow any number of e-transitions
at any time without consuming any input.




A Formal Definition of NFAs

- Formally, an NFA is a 5-tuple (Q, %, 6, q,, F) where

e Qs a set of states.
« 2 is an alphabet.

c 6:Q X (2 U {e}) » ©(Q) is the transition function.
« d, € Qis thg start stage.

« F C Q is aget of accepti tes.

Note that the codomain is

Note fhe domain sets of states 1o allow for
allows for e—moves multiple fransitions,
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