Finite Automata

Part Two

Announcements

- Practice midterm solutions available.
- Second practice midterm available.
- Midterm review session this Saturday,
 October 27 at 2PM in Gates 104.
 - Come with questions!
 - Leave with answers!
- Problem Set 3 and Problem Set 4 Checkpoints graded; will be returned at end of lecture.

A Friendly Reminder

∀ goes with →

3 goes with A

Finite Automata

DFAs, Informally

- A DFA is defined relative to some alphabet Σ .
- For each state in the DFA, there must be **exactly one** transition defined for each symbol in the alphabet.
 - This is the "deterministic" part of DFA.
- There is a **unique** start state.
- There may be multiple accepting states.

Recognizing Languages with DFAs

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$

Recognizing Languages with DFAs

 $L = \{ w \in \{0, 1\}^* | \text{ all even-numbered characters of } w \text{ are } 0 \}$

 $L = \{ w \mid w \text{ is a C-style comment } \}$ Suppose the alphabet is

$$\Sigma = \{ a, *, / \}$$

Try designing a DFA for comments!

Some test cases:

```
ACCEPTED REJECTED

/*a*/
/**/
/**/

/***/

/*aaa*aaa*/

/*/
```

```
L = \{ w \mid w \text{ is a C-style comment } \}
```



```
L = \{ w \mid w \text{ is a legal email address } \}
```

 $L = \{ w \mid w \text{ is a legal email address } \}$

	0	1
q_0	q_1	
q_1		
q_2		
q_3		

	0	1
q_0	q_1	q_0
q_1		
q_2		
q_3		

	0	1
q_0	q_1	q_0
q_1	q_3	
q_2		
q_3		

	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2		
q_3		

	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	
q_3		

	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
q_3		

	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
q_3	q_3	

	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
q_3	q_3	q_3

	0	1
*q ₀	q_1	q_0
q_1	q_3	q_2
q_2	q_3	d^0
q_3	q_3	q_3

Code? In a Theory Course?

```
int kTransitionTable[kNumStates][kNumSymbols] = {
     \{0, 0, 1, 3, 7, 1, ...\},\
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input)
        state = kTransitionTable[state][ch];
    return kAcceptTable[state];
```

Our Alphabet

0	1	0	0	1
0	1	1	0	1
1	0	1	1	0

0	1	0	0	1
0	1	1	0	1
1	0	1	1	0

0	1	0	0	1
0	1	1	0	1
1	0	1	1	0

0	1	0	0	1
0	1	1	0	1
1	0	1	1	0

0	1	0	0	1
0	1	1	0	1
1	0	1	1	0

• Formally, a DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where

- Formally, a DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a set of states.

- Formally, a DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a set of states.
 - Σ is an alphabet.

- Formally, a DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a set of states.
 - Σ is an alphabet.
 - $\delta : Q \times \Sigma \to Q$ is the **transition function**.

- Formally, a DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a set of states.
 - Σ is an alphabet.
 - $\delta : Q \times \Sigma \to Q$ is the **transition function**.

	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
q_3	q_3	q_3

- Formally, a DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a set of states.
 - Σ is an alphabet.
 - $\delta: Q \times \Sigma \to Q$ is the **transition function**.

	0	1
q_0	q_1	q_0
q_1	q_3	q_2
q_2	q_3	q_0
q_3	q_3	q_3

δ is a function, so there must be exactly one transition defined for each state/symbol pair.

- Formally, a DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a set of states.
 - Σ is an alphabet.
 - $\delta: Q \times \Sigma \to Q$ is the **transition function**.
 - $q_0 \in Q$ is the **start state**.

- Formally, a DFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a set of states.
 - Σ is an alphabet.
 - $\delta: Q \times \Sigma \to Q$ is the **transition function**.
 - $q_0 \in Q$ is the **start state**.
 - $F \subseteq Q$ is a set of **accepting states**.

A Formal Definition of Acceptance

- Given a DFA $D = (Q, \Sigma, \delta, q_0, F)$, we can formally define what it means for D to accept a string $w \in \Sigma^*$.
- **Idea**: Define a function $\delta^* : \Sigma^* \to Q$ that says what state we end up in if we run the DFA on a given string.
- This function represents the effect of running the computer on a given input.

A Formal Definition of Acceptance

- **Notation**: If ω is a string and \mathbf{a} is a character, then $\omega \mathbf{a}$ is the string formed by appending \mathbf{a} to ω .
- Given a DFA (Q, Σ , δ , q_0 , F), δ^* is defined recursively.
- $\delta^*(\varepsilon) = q_0$
 - Running the automaton on ε ends in the start state.
- $\delta^*(\omega_a) = \delta(\delta^*(\omega), a)$
 - Running on ω_a is equal to running the automaton on ω , then following the transition for a.

A Formal Definition of Acceptance

- Using our δ^* function, we can formally define the language of a DFA.
- Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- Define $\mathcal{L}(D) = \{ w \in \Sigma^* \mid \delta^*(w) \in F \}$
 - The set of strings *w* that cause the DFA to end up in an accepting state.

So What?

- We now have a mathematically rigorous way of defining whether a DFA accepts a string.
- We can try making changes to DFAs and can formally prove how those changes transform the language of the DFA.

A language L is called a **regular language** iff there exists a DFA D such that $\mathcal{L}(D) = L$.

- Given a language $L \subseteq \Sigma^*$, the **complement** of that language (denoted \overline{L}) is the language of all strings in Σ^* not in L.
- Formally:

$$\overline{L} = \{ w \mid w \in \Sigma^* \land w \notin L \}$$

- Given a language $L \subseteq \Sigma^*$, the **complement** of that language (denoted \overline{L}) is the language of all strings in Σ^* not in L.
- Formally:

$$\overline{L} = \{ w \mid w \in \Sigma^* \land w \notin L \}$$

- Given a language $L \subseteq \Sigma^*$, the **complement** of that language (denoted \overline{L}) is the language of all strings in Σ^* not in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the **complement** of that language (denoted \overline{L}) is the language of all strings in Σ^* not in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Recall: A regular language is a language accepted by some DFA.
- **Question:** If L is a regular language, is \overline{L} a regular language?
- If the answer is "yes," then there must be some way to construct a DFA for \overline{L} .
- If the answer is "no," then some language L can be accepted by a DFA, but \overline{L} cannot be accepted by any DFA.

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $\overline{L} = \{ w \in \{0, 1\}^* \mid w \text{ does not contain } 00 \text{ as a substring } \}$

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $\overline{L} = \{ w \in \{0, 1\}^* \mid w \text{ does not contain } 00 \text{ as a substring } \}$

 $L = \{ w \mid w \text{ is a legal email address } \}$

 $\overline{L} = \{ w \mid w \text{ is } \mathbf{not} \text{ a legal email address } \}$

 $\overline{L} = \{ w \mid w \text{ is } \mathbf{not} \text{ a legal email address } \}$

Constructions on Automata

- Much of our discussion of automata will consider constructions that transform one automaton into another.
- Exchanging accepting and rejecting states is a simple construction sometimes called the **complement construction**.
- Does this construction always work?
- How would we prove it?

Theorem: If $D=(Q, \Sigma, \delta, q_0, F)$ is a DFA with language $\mathcal{L}(D)$, then the DFA $D'=(Q, \Sigma, \delta, q_0, Q - F)$ has language $\overline{\mathcal{L}(D)}$.

```
Theorem: If D = (Q, \Sigma, \delta, q_0, F) is a DFA with language \mathcal{L}(D),
then the DFA D' = (Q, \Sigma, \delta, q_0, Q - F) has language \mathcal{L}(D).
Proof: By definition, \mathcal{L}(D') = \{ w \in \Sigma^* \mid \delta^*(w) \in Q - F \}. So
    \mathscr{L}(D') = \{ w \in \Sigma^* \mid \delta^*(w) \in Q \land \delta^*(w) \notin F \}
    \mathcal{L}(D') = \{ w \in \Sigma^* \mid \delta^*(w) \in Q \} - \{ w \in \Sigma^* \mid \delta^*(w) \in F \}
Since \delta^*: \Sigma^* \to Q, any string w \in \Sigma^* satisfies \delta^*(w) \in Q. Thus
    \mathcal{L}(D') = \{ w \in \Sigma^* \mid w \in \Sigma^* \} - \{ w \in \Sigma^* \mid \delta^*(w) \in F \}
    \mathscr{L}(D') = \Sigma^* - \{ w \in \Sigma^* \mid \delta^*(w) \in F \}
    \mathscr{L}(D') = \Sigma^* - \mathscr{L}(D)
    \mathscr{L}(D') = \overline{\mathscr{L}(D)}.
```

Closure Properties

- If L is a regular language, \overline{L} is a regular language.
- If we begin with a regular language and complement it, we end up with a regular language.
- This is an example of a closure property of regular languages.
 - The regular languages are closed under complementation.
 - We'll see more such properties later on.

NFAS

NFAs

- An NFA is a
 - Nondeterministic
 - Finite
 - Automaton
- Conceptually similar to a DFA, but equipped with the vast power of nondeterminism.

(Non)determinism

- A model of computation is **deterministic** if at every point in the computation, there is exactly one choice that can make.
- The machine accepts if that series of choices leads to an accepting state.
- A model of computation is **nondeterministic** if the computing machine may have multiple decisions that it can make at one point.
- The machine accepts if *any* series of choices leads to an accepting state.

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

0 1 0 1 1

If a NFA needs to make a transition when no transition exists, the automaton dies and that particular path rejects.

0 1 0 1 1

0 1 0 1 1

A More Complex NFA

A More Complex NFA

A More Complex NFA

1 0 1 1

Intuiting Nondeterminism

- Nondeterministic machines are a serious departure from physical computers.
- How can we build up an intuition for them?
- Three approaches:
 - Tree computation
 - Perfect guessing
 - Massive parallelism

 q_0

Nondeterminism as a Tree

- At each decision point, the automaton clones itself for each possible decision.
- The series of choices forms a directed, rooted tree.
- At the end, if any active accepting states remain, we accept.

Perfect Guessing

- We can view nondeterministic machines as having Magic Superpowers that enable them to guess the correct choice of moves to make.
- Idea: Machine can always guess the right choice if one exists.
- No physical analog for something of this sort.
 - (Those of you thinking quantum computing this is not the same thing. We actually don't fully know the relation between quantum and nondeterministic computation.)

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

- An NFA can be thought of as a DFA that can be in many states at once.
- Each symbol read causes a transition on every active state into each potential state that could be visited.
- Nondeterministic machines can be thought of as machines that can try any number of options in parallel.
 - No fixed limit on processors; makes multicore machines look downright wimpy!

So What?

- We will turn to these three intuitions for nondeterminism more later in the quarter.
- Nondeterministic machines may not be feasible, but they give a great basis for interesting questions:
 - Can any problem that can be solved by a nondeterministic machine be solved by a deterministic machine?
 - Can any problem that can be solved by a nondeterministic machine be solved efficiently by a deterministic machine?
- The answers vary from automaton to automaton.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

A Formal Definition of NFAs

- Formally, an NFA is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - Q is a set of states.
 - Σ is an alphabet.
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \wp(Q)$ is the **transition function**.
 - $q_0 \in Q$ is the start state.
 - $F \subseteq Q$ is a set of accepting states.

Note the domain allows for ϵ -moves

Note that the codomain is <u>sets</u> of states to allow for multiple transitions.