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Midterm Logistics

● Midterm is next Monday, October 29 from 
7PM – 10PM in Cubberly Auditorium.
● Open-book, open-note, open-computer, closed-

network.
● Covers material up through and including 

today's lecture.
● Practice exam available now; solutions will be 

released on Wednesday.
● If you need to take the exam at an alternate 

time, email the course staff no later than 
tomorrow at 2:15PM.



  



  

Computability Theory



  

What problems can we solve with a computer?

What kind of 
computer?



  

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm



  

We need a simpler way of 
discussing computing machines.



  

An automaton (plural: automata) is a 
mathematical model of a computing device.



  

Automata make it possible to reason about 
computability by abstracting away the 

implementation complexity of real 
computing systems.



  

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm



  

Automata are Clean
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Why Build Models?

● The models of computation we will explore in 
this class correspond to different conceptions of 
what a computer could do.

● Finite automata (this week) are an abstraction 
of computers with finite resource constraints.
● Provide upper bounds for the computing machines 

that we can actually build.

● Pushdown automata and Turing machines 
(next two weeks) are an abstraction of 
computers with unbounded resources.
● Provide upper bounds for what we could ever hope 

to accomplish.



  

What problems can we solve with a computer?

What is a 
“problem?”



  

Problems with Problems

● Before we can talk about what problems we 
can solve, we need a formal definition of a 
“problem.”

● We want a definition that
● corresponds to the problems we want to solve,
● captures a large class of problems, and
● is mathematically simple to reason about.

● No one definition has all three properties.



  

Decision Problems

● In this class, we will consider decision 
problems, problems with yes/no 
answers.

● Examples:
● Does 137 + 42 have 3 as a divisor?
● Is P the shortest path from u to v?
● Is District 12 better than District 1?
● Do we have to get down on Friday?

● More realistic example: SAT.



  

Decision and Function Problems

● Decision problems do not encompass all 
possible problems.
● Example: “What is 2 + 2?” is not a decision 

problem.

● These more general problems are called 
function problems.

● For now, we'll ignore function problems.  
We'll revisit them toward the end of the 
quarter.



  

Why Decision Problems

● Why restrict ourselves to decision problems?
● Many nice mathematical properties:

● All answers are just one bit, so machines can 
produce answers more easily.

● No need to worry about what formats the answers 
will be provided in.

● Easy to use as subroutines.

● If we can't solve a decision problem, the 
question must be so hard that we can't even get 
a one-bit answer back!



  

How do we encode problems?



  

Strings

● An alphabet is a finite set of characters.
● Typically, we use the symbol Σ to refer to an 

alphabet.

● A string is a finite sequence of characters drawn 
from some alphabet.

● Example: If Σ = {0, 1}, some valid strings include
● 0
● 111010010000100000001
● 11011100101110111

● The empty string contains no characters and is 
denoted ε.



  

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is a 

set of strings formed from characters in Σ.
● Example: The language of palindromes over 

Σ = {0, 1, 2} is the set

{ε, 0, 1, 2, 00, 11, 22, 000, 010, 020, 101, … }

● The set of all strings composed from letters in 
Σ is denoted Σ*.

● L is a language over Σ iff L ⊆ Σ*.

 



  

Decision Problems and Languages

● Languages give a compact and flexible way to encode 
decision problems.

● Consider these examples:
● { p | p is a binary representation of a prime number }
● { w | w is a textual encoding of (x, y), where x < y }
● { x | x is a textual encoding of a graph G and a path P, where P 

is the longest path in G }

● Any decision problem can be represented by a language of 
strings encoding inputs to which the answer is “yes.”

● All the automata we will discuss in this class will be 
machines for answering the question “is string x in 
language L?”



  

To Summarize

● An automaton is an idealized 
mathematical computing machine.

● A language is a set of strings.
● A decision problem is a yes/no question 

(though it can be quite complex).
● The automata we will study will accept as 

input a string and (attempt to) output 
whether that string is contained in a 
particular language.



  

What problems can we solve with a computer?



  

Finite Automata



  

A finite automaton is a mathematical 
machine for determining whether a string

is contained within some language.



  

Each finite automaton consists of a set
of states connected by transitions.



  

A Simple Finite Automaton
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A Simple Finite Automaton
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represents a state 
of the automaton.



  

A Simple Finite Automaton
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designated as the 

start state.

One special state is 
designated as the 

start state.



  

A Simple Finite Automaton
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A Simple Finite Automaton
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A Simple Finite Automaton
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A Simple Finite Automaton
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Each arrow in this 
diagram represents a 
transition.  The 
automaton always 

follows the transition 
corresponding to the 
current symbol being 

read.

Each arrow in this 
diagram represents a 
transition.  The 
automaton always 

follows the transition 
corresponding to the 
current symbol being 

read.



  

A Simple Finite Automaton
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A Simple Finite Automaton
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A Simple Finite Automaton
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A Simple Finite Automaton
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A Simple Finite Automaton
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A Simple Finite Automaton
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A Simple Finite Automaton
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looked at all this 
input, it can decide 
whether to say “yes” 
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accepting state, 
so the automaton 
outputs “yes.”

The double circle 
indicates that this 

state is an 
accepting state, 
so the automaton 
outputs “yes.”



  

The Story So Far

● A finite automaton is a collection of states 
joined by transitions.

● Some state is designated as the start state.

● Some states are designated as accepting states.

● The automaton processes a string by beginning in 
the start state and following the indicated 
transitions.

● If the automaton ends in an accepting state, it 
accepts the input.

● Otherwise, the automaton rejects the input.



  

A finite automaton does not accept as soon 
as the input enters an accepting state.

A finite automaton accepts if it ends in an 
accepting state.



  

What Does This Accept?
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What Does This Accept?
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No matter where we 
start in the automaton, 
after seeing two 1's, we 

end up in accepting 
state q3.
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What Does This Accept?
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start in the automaton, 
after seeing two 0's, 
we end up in accepting 

state q5.
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after seeing two 0's, 
we end up in accepting 

state q5.



  

What Does This Accept?
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it ends in 00 or 11.

This automaton 
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it ends in 00 or 11.



  

The language of an automaton is the 
set of strings that it accepts.

If A is an automaton, we denote the 
language of A as ℒ(A).

Intuitively:

ℒ(A) = { w ∈ Σ* | A accepts w }



  

A Small Problem
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Another Small Problem
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The Need for Formalism

● In order to reason about the limits of 
what finite automata can and cannot do, 
we need to formally specify their behavior 
in all cases.

● All of the following need to be defined or 
disallowed:
● What happens if there is no transition out of 

a state on some input?
● What happens if there are multiple 

transitions out of a state on some input?



  

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton 
that we will see in this course.



  

DFAs, Informally

● A DFA is defined relative to some 
alphabet Σ.

● For each state in the DFA, there must be 
exactly one transition defined for each 
symbol in the alphabet.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There may be multiple accepting states.



  

Designing DFAs

● At each point in its execution, the DFA 
can only remember what state it is in.

● A good way to design DFAs is to think 
about what information you would need 
to pick up where you left off.
● Each state acts as a “memento” of what 

you're supposed to do next.



  

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q
0

start
q

1
q

2

0 0

1

1

            0, 1



  

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| all even-numbered digits of w are 0 }
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Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| all even-numbered digits of w are 0 }
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