Finite Automata

Midterm Logistics

- Midterm is next Monday, October 29 from 7PM - 10PM in Cubberly Auditorium.
- Open-book, open-note, open-computer, closednetwork.
- Covers material up through and including today's lecture.
- Practice exam available now; solutions will be released on Wednesday.
- If you need to take the exam at an alternate time, email the course staff no later than tomorrow at $2: 15 \mathrm{PM}$.

$L(M)=L\left((0+1)^{\prime}(00+11)\right)$
ent out today. The checkpoint is Monday, October 22 at the is graded on a received / not he remaining problems are due er 26 at the start of class.
plays around with logic. You'll

Handouts

00: Course Information
01: Syllabus
02: Prior Experience Survey
07: Diagonalization

Assignments

Problem Set 1
(checkpoint solutions)

Resources

Course Notes
Definitions and Theorems
Office Hours Schedule

Grades
Lectures

00: Set Theory

Computability Theory

What problems can we solve with a computer?

What kind of
computer?

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm

We need a simpler way of discussing computing machines.

An automaton (plural: automata) is a mathematical model of a computing device.

Automata make it possible to reason about computability by abstracting away the implementation complexity of real computing systems.

Computers are Messy

http://www.intel.com/design/intarch/prodbref/272713.htm

Automata are Clean

Why Build Models?

- The models of computation we will explore in this class correspond to different conceptions of what a computer could do.
- Finite automata (this week) are an abstraction of computers with finite resource constraints.
- Provide upper bounds for the computing machines that we can actually build.
- Pushdown automata and Turing machines (next two weeks) are an abstraction of computers with unbounded resources.
- Provide upper bounds for what we could ever hope to accomplish.

What problems can we solve with a computer?

What is a
"problem?"

Problems with Problems

- Before we can talk about what problems we can solve, we need a formal definition of a "problem."
- We want a definition that
- corresponds to the problems we want to solve,
- captures a large class of problems, and
- is mathematically simple to reason about.
- No one definition has all three properties.

Decision Problems

- In this class, we will consider decision problems, problems with yes/no answers.
- Examples:
- Does $137+42$ have 3 as a divisor?
- Is P the shortest path from u to v ?
- Is District 12 better than District 1?
- Do we have to get down on Friday?
- More realistic example: SAT.

Decision and Function Problems

- Decision problems do not encompass all possible problems.
- Example: "What is $2+2$?" is not a decision problem.
- These more general problems are called function problems.
- For now, we'll ignore function problems. We'll revisit them toward the end of the quarter.

Why Decision Problems

- Why restrict ourselves to decision problems?
- Many nice mathematical properties:
- All answers are just one bit, so machines can produce answers more easily.
- No need to worry about what formats the answers will be provided in.
- Easy to use as subroutines.
- If we can't solve a decision problem, the question must be so hard that we can't even get a one-bit answer back!

How do we encode problems?

Strings

- An alphabet is a finite set of characters.
- Typically, we use the symbol $\boldsymbol{\Sigma}$ to refer to an alphabet.
- A string is a finite sequence of characters drawn from some alphabet.
- Example: If $\Sigma=\{0,1\}$, some valid strings include
- 0
- 111010010000100000001
- 11011100101110111
- The empty string contains no characters and is denoted $\boldsymbol{\varepsilon}$.

Languages

- A formal language is a set of strings.
- We say that L is a language over $\boldsymbol{\Sigma}$ if it is a set of strings formed from characters in Σ.
- Example: The language of palindromes over $\Sigma=\{0,1,2\}$ is the set

$$
\{\varepsilon, 0,1,2,00,11,22,000,010,020,101, \ldots\}
$$

- The set of all strings composed from letters in Σ is denoted Σ^{*}.
- L is a language over Σ iff $L \subseteq \Sigma^{*}$.

Decision Problems and Languages

- Languages give a compact and flexible way to encode decision problems.
- Consider these examples:
- $\{p \mid p$ is a binary representation of a prime number $\}$
- $\{w \mid w$ is a textual encoding of (x, y), where $x<y\}$
- $\{x \mid x$ is a textual encoding of a graph G and a path P, where P is the longest path in G \}
- Any decision problem can be represented by a language of strings encoding inputs to which the answer is "yes."
- All the automata we will discuss in this class will be machines for answering the question "is string x in language L ?"

To Summarize

- An automaton is an idealized mathematical computing machine.
- A language is a set of strings.
- A decision problem is a yes/no question (though it can be quite complex).
- The automata we will study will accept as input a string and (attempt to) output whether that string is contained in a particular language.

What problems can we solve with a computer?

Finite Automata

A finite automaton is a mathematical machine for determining whether a string is contained within some language.

Each finite automaton consists of a set of states connected by transitions.

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton

One special state is designated as the start state.

A Simple Finite Automaton

$$
\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

A Simple Finite Automaton

$$
\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

A Simple Finite Automaton

$$
\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}
$$

The Story So Far

- A finite automaton is a collection of states joined by transitions.
- Some state is designated as the start state.
- Some states are designated as accepting states.
- The automaton processes a string by beginning in the start state and following the indicated transitions.
- If the automaton ends in an accepting state, it accepts the input.
- Otherwise, the automaton rejects the input.

A finite automaton does not accept as soon as the input enters an accepting state.

A finite automaton accepts if it ends in an accepting state.

What Does This Accept?

The language of an automaton is the set of strings that it accepts.

If A is an automaton, we denote the language of A as $\mathscr{L}(A)$.

Intuitively:
$\mathscr{L}(A)=\left\{w \in \Sigma^{*} \mid A\right.$ accepts $\left.w\right\}$

A Small Problem

Another Small Problem

The Need for Formalism

- In order to reason about the limits of what finite automata can and cannot do, we need to formally specify their behavior in all cases.
- All of the following need to be defined or disallowed:
- What happens if there is no transition out of a state on some input?
- What happens if there are multiple transitions out of a state on some input?

DFAs

- A DFA is a
- Deterministic
- Finite
- Automaton
- DFAs are the simplest type of automaton that we will see in this course.

DFAs, Informally

- A DFA is defined relative to some alphabet Σ.
- For each state in the DFA, there must be exactly one transition defined for each symbol in the alphabet.
- This is the "deterministic" part of DFA.
- There is a unique start state.
- There may be multiple accepting states.

Designing DFAs

- At each point in its execution, the DFA can only remember what state it is in.
- A good way to design DFAs is to think about what information you would need to pick up where you left off.
- Each state acts as a "memento" of what you're supposed to do next.

Recognizing Languages with DFAs $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 00 as a substring $\}$

Recognizing Languages with DFAs

$$
L=\left\{w \in\{0,1\}^{*} \mid \text { all even-numbered digits of } w \text { are } 0\right\}
$$

YES

NO

1
001
00001

Recognizing Languages with DFAs

$$
L=\left\{w \in\{0,1\}^{*} \mid \text { all even-numbered digits of } w \text { are } 0\right\}
$$

