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Midterm Logistics

 Midterm is next Monday, October 29 from
7PM - 10PM in Cubberly Auditorium.

 Open-book, open-note, open-computer, closed-
network.

» Covers material up through and including
today's lecture.

 Practice exam available now; solutions will be
released on Wednesday.

 If you need to take the exam at an alternate
time, email the course statff no later than
tomorrow at 2:15PM.
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Computability Theory



What problems can we solve with a computer?



What problems can we solve with a computer?

/

What kind of
computer?
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Computers are Messy
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Computers are Messy

SM

4, 8, 16 or 30 SMs
(32, 84, 12Tr 240 SPs)

Cache

Multithreading

Double-precision SP

DP: double precision processor SFU: special functionunit  SM: streaming multi-processor

SP: streaming processor
Fig 2 Covering Everything from PCs to Supercomputers NVIDIA’s CUDA architecture boasts high scalability. The quantity of processor
units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has

double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/
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We need a simpler way of
discussing computing machines.



An automaton (plural: automata) is a
mathematical model of a computing device.



Automata make it possible to reason about
computability by abstracting away the
implementation complexity of real
computing systems.
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Computers are Messy
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Why Build Models?

 The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

 Finite automata (this week) are an abstraction
of computers with finite resource constraints.

» Provide upper bounds for the computing machines
that we can actually build.

« Pushdown automata and Turing machines
(next two weeks) are an abstraction of
computers with unbounded resources.

« Provide upper bounds for what we could ever hope
to accomplish.



What problems can we solve with a computer?



What problems can we solve with a computer?

|

What is a
‘oroblem?”



Problems with Problems

« Before we can talk about what problems we
can solve, we need a formal definition of a
“problem.”

« We want a definition that

e corresponds to the problems we want to solve,
« captures a large class of problems, and
« is mathematically simple to reason about.

 No one definition has all three properties.



Decision Problems

e In this class, we will consider decision
problems, problems with yes/no
answers.

« Examples:

e Does 137 + 42 have 3 as a divisor?
e Is P the shortest path from u to v?
 Is District 12 better than District 17
Do we have to get down on Friday?

« More realistic example: SAT.



Decision and Function Problems

« Decision problems do not encompass all
possible problems.

 Example: “What is 2 + 2?” is not a decision
problem.

« These more general problems are called
function problems.

« For now, we'll ignore function problems.
We'll revisit them toward the end of the
quarter.



Why Decision Problems

 Why restrict ourselves to decision problems?
« Many nice mathematical properties:

« All answers are just one bit, so machines can
produce answers more easily.

 No need to worry about what formats the answers
will be provided in.

« Fasy to use as subroutines.

« If we can't solve a decision problem, the

question must be so hard that we can't even get
a one-bit answer back!



How do we encode problems?



Strings

An alphabet is a finite set of characters.

« Typically, we use the symbol X to refer to an
alphabet.

A string is a finite sequence of characters drawn
from some alphabet.

Example: If X = {0, 1}, some valid strings include
« 0O

« 111010010000100000001

« 11011100101110111

The empty string contains no characters and is
denoted &.



Languages

« A formal language is a set of strings.

 We say that L is a language over X if it is a
set of strings formed from characters in .

 Example: The language of palindromes over
> =40,1, 2} is the set

{¢, 0, 1, 2, 00, 11, 22, 000, 010, 020, 101, ... }

« The set of all strings composed from letters in
2 is denoted X*,

 [. is a language over X2 iff L C >*,



Decision Problems and Languages

 Languages give a compact and flexible way to encode
decision problems.

« Consider these examples:

 { p| pis a binary representation of a prime number }
« { w| wis a textual encoding of (x, y), where x <y }

 { x| x is a textual encoding of a graph G and a path P, where P
is the longest path in G }

« Any decision problem can be represented by a language of
strings encoding inputs to which the answer is “yes.”

 All the automata we will discuss in this class will be
machines for answering the question “is string x in
language L?”



To Summarize

« An automaton is an idealized
mathematical computing machine.

» A language is a set of strings.

* A decision problem is a yes/no question
(though it can be quite complex).

 The automata we will study will accept as
input a string and (attempt to) output
whether that string is contained in a
particular language.



What problems can we solve with a computer?



Finite Automata



A finite automaton is a mathematical
machine for determining whether a string
1s contained within some language.



Each finite automaton consists of a set
of states connected by transitions.
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A Simple Finite Automaton
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Time, IT begins in
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A Simple Finite Automaton
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characters in the
order in which they
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A Simple Finite Automaton
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Now That the
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looked at all this
input, it can decide
whether To say ‘yes”

or ‘no.”’
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A Simple Finite Automaton
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The Story So Far

A finite automaton is a collection of states
joined by transitions.

Some state is designated as the start state.
Some states are designated as accepting states.

The automaton processes a string by beginning in
the start state and following the indicated
transitions.

If the automaton ends in an accepting state, it
accepts the input.

Otherwise, the automaton rejects the input.



Accepting States, Revisited
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A finite automaton does not accept as soon
as the input enters an accepting state.

A finite automaton accepts if it ends in an
accepting state.
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What Does This Accept?

No matter where we
start in The auTomaton,
atter seeing fwo 1's, we

end up in accepling
state 4.
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What Does This Accept?

No maffer where we
start in The auTomaton,
atfer seeing two 0's,
we end up in accepting
statle 4..
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What Does This Accept?

This automaton
accepts a string itf
T ends in 00 or 1.




The language of an automaton is the
set of strings that it accepts.

If A is an automaton, we denote the
language of A as AA).

Intuitively:

HAA) ={weX*|Aaccepts w }
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The Need for Formalism

e In order to reason about the limits of
what finite automata can and cannot do,

we need to formally specify their behavior
in all cases.

« All of the following need to be defined or
disallowed:

« What happens if there is no transition out of
a state on some input?

« What happens if there are multiple
transitions out of a state on some input?



DFAs

« ADFAis a

e Deterministic
 Finite
e Automaton

« DFAs are the simplest type of automaton
that we will see in this course.



DFAs, Informally

« A DFA is defined relative to some
alphabet .

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in the alphabet.

e This is the “deterministic” part of DFA.
 There is a unique start state.

 There may be multiple accepting states.
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Drinking Family of Aardvarks



Designing DFAS

« At each point in its execution, the DFA
can only remember what state it is in.

A good way to design DFAs is to think
about what information you would need
to pick up where you left off.

« Each state acts as a “memento” of what
you're supposed to do next.



Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }
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0101010001 00001
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