Finite Automata

v ']

-y
L]

Midterm Logistics

 Midterm is next Monday, October 29 from
7PM - 10PM in Cubberly Auditorium.

 Open-book, open-note, open-computer, closed-
network.

» Covers material up through and including
today's lecture.

 Practice exam available now; solutions will be
released on Wednesday.

 If you need to take the exam at an alternate
time, email the course statff no later than
tomorrow at 2:15PM.

C3S103

Mathematical Foundations of Computing

nts Handouts Resources
F Out 00: Course Information Course Notes
01: Syllabus Definitions and Theorems
02: Prior Experience Survey Office Hours Schedule
[ent out today. The checkpoint 07: Diagonalization Gl
is Monday, October 22 at the

is graded on a received / not

" deos
he remaining problems are due Assignments

Er 26 at the start of class. Lectures
Problem Set 1

{checkpoint solutions)

lays around with logic. You'll 00: Set Theory

Computability Theory

What problems can we solve with a computer?

What problems can we solve with a computer?

/

What kind of
computer?

Computers are Messy

Bd-Bit Interunit Transfer Bus

S2-Bit Data Bus

Tﬁ“‘ = Core
.
' 32.61 Data Bus 32 Clocks | ek L
T o ,.-'gg Cortrol
inear &ddress
il Q
{ ,l? J\ } £ ‘J\ } Bus Interface . A2—431
P, P BE #_BE3#
Barrel Shitter | paser Segmuergatln:un 2 Cache Unit #ﬁ Aldress
n Paging 3 32 Lrrivers
Incles Urit 0
Bus , " Wirite Butiers
) . Descriptor Physical rd
Register File P , ¥ = 432
32 REQISTEFS Address g Hh':.-‘tE-' .raz L
. Cache LoD 31
Litnit and Tranzlation | ;| DataBus
AL Aftribute PLA, LnEnkfaf::de ey ;2 Transceivers ”
Liffer
ADSEWRE DICE MACR PCD
128 Bus Cortrol | pyyT RO LOCK# PLOCK #
EOFF# AZ0M%E ERER HOLD
. HLDAREZET SRESET IMNTR
Displacement Bus . Sreetihar || Request | NMISMIZ SMIACTE STP CLKA
| . - |~ Sequencer a
Microdnstriction
32 Byte Code Burd Bus | BRDY# BLAST#
Code ClieLe Cortrol ”
iy S Stream
A | Instruction (g 2 1B Etes Cache | e Mg FLUSH# SHOLD EADSH
Protection Test| Decade Contral
Uit F—] 24 —
Decoded
Cantrol ROM | Instruction Eoundary Scan
Path Cantral TCK
TS
TOD

http://www.intel.com/design/intarch/prodbref/272713.htm

Computers are Messy

ISP Connector

- 0
—
o & 20 ReseT (ADC7)PA7 33 P
o {ADCE)PAS 22 = 2|y
| 35 C rsfh=x ©
12 {ADCSE)PAS ag g M,
XTAL2 (ADC4)PA4 — 5
» &5 (ADC2)PA3 T GND '
PR XTAL1 (ADC2)PAZ —= ! -
GND =4 (ADCTPAT 52 E
1 AREF {ADCO)PAD [-
u E 30 AVCC | 4
a1 4 8 5
€3 AGND {SCK)PB7
U/T\GW-E' 0 (MisopBs L — =
= * e 5 vee (MOSDPBS | — -
L GND (SS)PB4 [2 SIRERE o6
{AIN1/OCD)PB2 | A SrE
0.1p (AINGINT2)PB2 |2 SD Card Connector
mper -2 Loty
S ToXCKIPBO e =
{TOSC2)PCT %
(TOSC1)PCe —22
VCC=3.3v (TDIPCs |—2L Co
1 (TDOjPCs 23 Ricimil -
&) (TMS)PC3 = Ci+ e
aav (TCKPC2 2% uf ve |2 %
—. (SDAJPC1 % 31 ci- .
- (SCLIPCD =2 v !
| K c7 _[C2 1af . s/ (=
21 24 2
{oczipoy 2L] : £l
ol (cPIPDs [22 LU GND
({OC1A)PDS —18 i 14
L (0G1B)PDs —2 i TN TiouT =
GND (NTHPDz 1T LED e CANEREET) e
{INTO)PD2 i - 5 R1OUT RilN 5
(TXD)PD1 | —12 e 2 1 pour R2N E-
(RXD)PDO
R MAX232
MEGA32-P I !
o2E GND (T L)
T o
by CC Dharmani o g i o
GND RS232 DBa(F)Connector

www.dharmanitech.com

microSD/SD Card interface with ATmega32 ver_23

http://www.dharmanitech.com/

Computers are Messy

SM

4, 8, 16 or 30 SMs
(32, 84, 12Tr 240 SPs)

Cache

Multithreading

Double-precision SP

DP: double precision processor SFU: special functionunit SM: streaming multi-processor

SP: streaming processor
Fig 2 Covering Everything from PCs to Supercomputers NVIDIA’s CUDA architecture boasts high scalability. The quantity of processor
units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has

double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Computers are Messy

&

http://en.wikipedia.org/wiki/File:Eniac.jpg

We need a simpler way of
discussing computing machines.

An automaton (plural: automata) is a
mathematical model of a computing device.

Automata make it possible to reason about
computability by abstracting away the
implementation complexity of real
computing systems.

Computers are Messy

Bd-Bit Interunit Transfer Bus

S2-Bit Data Bus

Tﬁ“‘ = Core
.
' 32.61 Data Bus 32 Clocks | ek L
T o ,.-'gg Cortrol
inear &ddress
il Q
{ ,l? J\ } £ ‘J\ } Bus Interface . A2—431
P, P BE #_BE3#
Barrel Shitter | paser Segmuergatln:un 2 Cache Unit #ﬁ Aldress
n Paging 3 32 Lrrivers
Incles Urit 0
Bus , " Wirite Butiers
) . Descriptor Physical rd
Register File P , ¥ = 432
32 REQISTEFS Address g Hh':.-‘tE-' .raz L
. Cache LoD 31
Litnit and Tranzlation | ;| DataBus
AL Aftribute PLA, LnEnkfaf::de ey ;2 Transceivers ”
Liffer
ADSEWRE DICE MACR PCD
128 Bus Cortrol | pyyT RO LOCK# PLOCK #
EOFF# AZ0M%E ERER HOLD
. HLDAREZET SRESET IMNTR
Displacement Bus . Sreetihar || Request | NMISMIZ SMIACTE STP CLKA
| . - |~ Sequencer a
Microdnstriction
32 Byte Code Burd Bus | BRDY# BLAST#
Code ClieLe Cortrol ”
iy S Stream
A | Instruction (g 2 1B Etes Cache | e Mg FLUSH# SHOLD EADSH
Protection Test| Decade Contral
Uit F—] 24 —
Decoded
Cantrol ROM | Instruction Eoundary Scan
Path Cantral TCK
TS
TOD

http://www.intel.com/design/intarch/prodbref/272713.htm

Automata are Clean
0

1 1 1 1

ORI O,

Computers are Messy

ISP Connector

- 0
—
o & 20 ReseT (ADC7)PA7 33 P
o {ADCE)PAS 22 = 2|y
| 35 C rsfh=x ©
12 {ADCSE)PAS ag g M,
XTAL2 (ADC4)PA4 — 5
» &5 (ADC2)PA3 T GND '
PR XTAL1 (ADC2)PAZ —= ! -
GND =4 (ADCTPAT 52 E
1 AREF {ADCO)PAD [-
u E 30 AVCC | 4
a1 4 8 5
€3 AGND {SCK)PB7
U/T\GW-E' 0 (MisopBs L — =
= * e 5 vee (MOSDPBS | — -
L GND (SS)PB4 [2 SIRERE o6
{AIN1/OCD)PB2 | A SrE
0.1p (AINGINT2)PB2 |2 SD Card Connector
mper -2 Loty
S ToXCKIPBO e =
{TOSC2)PCT %
(TOSC1)PCe —22
VCC=3.3v (TDIPCs |—2L Co
1 (TDOjPCs 23 Ricimil -
&) (TMS)PC3 = Ci+ e
aav (TCKPC2 2% uf ve |2 %
—. (SDAJPC1 % 31 ci- .
- (SCLIPCD =2 v !
| K c7 _[C2 1af . s/ (=
21 24 2
{oczipoy 2L] : £l
ol (cPIPDs [22 LU GND
({OC1A)PDS —18 i 14
L (0G1B)PDs —2 i TN TiouT =
GND (NTHPDz 1T LED e CANEREET) e
{INTO)PD2 i - 5 R1OUT RilN 5
(TXD)PD1 | —12 e 2 1 pour R2N E-
(RXD)PDO
R MAX232
MEGA32-P I !
o2E GND (T L)
T o
by CC Dharmani o g i o
GND RS232 DBa(F)Connector

www.dharmanitech.com

microSD/SD Card interface with ATmega32 ver_23

http://www.dharmanitech.com/

Automata are Clean
0

1 1 1 1

ORI O,

Computers are Messy

SM

4, 8, 16 or 30 SMs
(32, 84, 12Tr 240 SPs)

Cache

Multithreading

Double-precision SP

DP: double precision processor SFU: special functionunit SM: streaming multi-processor

SP: streaming processor
Fig 2 Covering Everything from PCs to Supercomputers NVIDIA’s CUDA architecture boasts high scalability. The quantity of processor
units (SM) can be varied as needed to flexibly provide performance from PC to supercomputer levels. Tesla 10, with 240 SPs, also has

double-precision operation units (SM) added.

http://techon.nikkeibp.co.jp/article/HONSHI/20090119/164259/

Automata are Clean
0

1 1 1 1

ORI O,

Computers are Messy

&

http://en.wikipedia.org/wiki/File:Eniac.jpg

Automata are Clean
0

1 1 1 1

ORI O,

Why Build Models?

 The models of computation we will explore in
this class correspond to different conceptions of
what a computer could do.

 Finite automata (this week) are an abstraction
of computers with finite resource constraints.

» Provide upper bounds for the computing machines
that we can actually build.

« Pushdown automata and Turing machines
(next two weeks) are an abstraction of
computers with unbounded resources.

« Provide upper bounds for what we could ever hope
to accomplish.

What problems can we solve with a computer?

What problems can we solve with a computer?

|

What is a
‘oroblem?”

Problems with Problems

« Before we can talk about what problems we
can solve, we need a formal definition of a
“problem.”

« We want a definition that

e corresponds to the problems we want to solve,
« captures a large class of problems, and
« is mathematically simple to reason about.

 No one definition has all three properties.

Decision Problems

e In this class, we will consider decision
problems, problems with yes/no
answers.

« Examples:

e Does 137 + 42 have 3 as a divisor?
e Is P the shortest path from u to v?
 Is District 12 better than District 17
Do we have to get down on Friday?

« More realistic example: SAT.

Decision and Function Problems

« Decision problems do not encompass all
possible problems.

 Example: “What is 2 + 2?” is not a decision
problem.

« These more general problems are called
function problems.

« For now, we'll ignore function problems.
We'll revisit them toward the end of the
quarter.

Why Decision Problems

 Why restrict ourselves to decision problems?
« Many nice mathematical properties:

« All answers are just one bit, so machines can
produce answers more easily.

 No need to worry about what formats the answers
will be provided in.

« Fasy to use as subroutines.

« If we can't solve a decision problem, the

question must be so hard that we can't even get
a one-bit answer back!

How do we encode problems?

Strings

An alphabet is a finite set of characters.

« Typically, we use the symbol X to refer to an
alphabet.

A string is a finite sequence of characters drawn
from some alphabet.

Example: If X = {0, 1}, some valid strings include
« 0O

« 111010010000100000001

« 11011100101110111

The empty string contains no characters and is
denoted &.

Languages

« A formal language is a set of strings.

 We say that L is a language over X if it is a
set of strings formed from characters in .

 Example: The language of palindromes over
> =40,1, 2} is the set

{¢, 0, 1, 2, 00, 11, 22, 000, 010, 020, 101, ... }

« The set of all strings composed from letters in
2 is denoted X*,

 [. is a language over X2 iff L C >*,

Decision Problems and Languages

 Languages give a compact and flexible way to encode
decision problems.

« Consider these examples:

 { p| pis a binary representation of a prime number }
« { w| wis a textual encoding of (x, y), where x <y }

 { x| x is a textual encoding of a graph G and a path P, where P
is the longest path in G }

« Any decision problem can be represented by a language of
strings encoding inputs to which the answer is “yes.”

 All the automata we will discuss in this class will be
machines for answering the question “is string x in
language L?”

To Summarize

« An automaton is an idealized
mathematical computing machine.

» A language is a set of strings.

* A decision problem is a yes/no question
(though it can be quite complex).

 The automata we will study will accept as
input a string and (attempt to) output
whether that string is contained in a
particular language.

What problems can we solve with a computer?

Finite Automata

A finite automaton is a mathematical
machine for determining whether a string
1s contained within some language.

Each finite automaton consists of a set
of states connected by transitions.

A Simple Finite Automaton
0

1 1 1 1

ORE 0

A Simple Finite Automaton
0

O

Each circle

represents a state
ot the aufomaton.

A Simple Finite Automaton
0

1 1 1 1

ORE 0

A Simple Finite Automaton
0

start @ m
: 0 \11/
1 1 1 1

ORE 0

One special state is
designated as the
start state.

A Simple Finite Automaton
0

1 1 1 1

ORE 0

A Simple Finite Automaton
0

1 1 1 1

ORE 0
010110

A Simple Finite Automaton

0
start
® . ©®
0 \1/
1 1 1 1
The automaton is

run on an input
string and answers
‘yes” or ‘no.”

A Simple Finite Automaton
0

1 1 1 1

ORE 0
010110

A Simple Finite Automaton
0

1 1 1 1

ORE 0
010110

A Simple Finite Automaton
0

start @ O @

The auTomaton can
be in one stafe at a
Time, IT begins in
The start state.

A Simple Finite Automaton
0

1 1 1 1

ORE 0
010110

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0
010110

A Simple Finite Automaton
0

start @ O @

The automaton now
beqins processing
characters in the
order in which they

appear.,

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0
010110

A Simple Finite Automaton

start

1

0

CEREEN

A Simple Finite Automaton
0

1
Each arrow in this
/!\ diagram represents a
Q_?’/l 0 .(. transition, The
auTomaton always
follows fhe fransition
corresponding To the

current symbol being
read,

A Simple Finite Automaton

start

1

0

CEREEN

A Simple Finite Automaton

start

1

0

CEREEN

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0
010110

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0
010110

A Simple Finite Automaton

0
start
® . ®
0 \1/
Atfer transitioning,
1 1 1 The auTomaTom
considers the next
symbol in The

input,

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0
010110

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

OB 0
010110

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

OB 0
010110

A Simple Finite Automaton
0

1 1 1 1

A Simple Finite Automaton
0

1 1 1 1

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

@ O
010110

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

@ O
010110

A Simple Finite Automaton

>0

1

1 1

A Simple Finite Automaton

D . ©

1

1 1

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0
010110

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0
010110

A Simple Finite Automaton

A Simple Finite Automaton

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

@ O
010110

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

@ O
010110

A Simple Finite Automaton
0

A Simple Finite Automaton
0

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

OB 0
010110

A Simple Finite Automaton
0

1 1 1 1

OB 0
010110

A Simple Finite Automaton
0

Now That the
auTomaton has
looked at all this
input, it can decide
whether To say ‘yes”

or ‘no.”’

A Simple Finite Automaton

0

Now thal The
automaton has
looked at all this
input, it can decide
whether To say ‘yes”
or ‘no.,”

The double circle
indicates That this
state is an
accepling state,
so the auTomaton
outputs ‘yes,”

A Simple Finite Automaton

0

Now thal The
automaton has
looked at all this
input, it can decide
whether To say ‘yes”
or ‘no.,”

The double circle
indicates That this
state is an
accepling state,
so the auTomaton
outputs ‘yes,”

A Simple Finite Automaton

The double circle
indicates That this
state is an
accepling state,
so The automaton
outpuls ‘ues,”

A Simple Finite Automaton
0

1 1 1 1

ORE 0

A Simple Finite Automaton
0

1 1 1 1

ORE 0

1 01 0 0 O

A Simple Finite Automaton
0

1 1 1 1

ORE 0

1 01 0 0 O

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0

A Simple Finite Automaton

1 01 0 0 O

A Simple Finite Automaton

1 01 0 0 O

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

@ O

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

@ O

A Simple Finite Automaton
0

1 1 1 1

1 01 0 0 O

A Simple Finite Automaton
0

1 1 1 1

1 01 0 0 O

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

OB 0

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

OB 0

A Simple Finite Automaton

0

A Simple Finite Automaton

0

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0

A Simple Finite Automaton
0

start
()=
0

1

1 1

0

1 01 0 0 O

A Simple Finite Automaton
0

start
0

1

1 1

0

1 01 0 0 O

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0

A Simple Finite Automaton

start

1 1 1

0

1 01 0 0 O

A Simple Finite Automaton

start

1 1 1

0

1 01 0 0 O

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0

A Simple Finite Automaton
0

start
(=
0

1

1 1

0

1 01 0 0 O

A Simple Finite Automaton
0

start
0

1

1 1

0

1 01 0 0 O

A Simple Finite Automaton
0

start @ m
0 1
0 \1/
1 1 1 1

ORE 0

A Simple Finite Automaton
0

1 1 1 1

ORE 0

1 01 0 0 O

A Simple Finite Automaton
0

This state is not
an accepting sfate,
so the aufomaton

says “no,”

1 01 0 0 O

A Simple Finite Automaton
0

This state is not
an accepting sfate,
so the aufomaton

says “no,”

A Simple Finite Automaton
0

start
O;
0

This state is not
an accepting sfate,
so the automalon
says “no.”

A Simple Finite Automaton
0

1 1 1 1

ORE 0

A Simple Finite Automaton

0
start @ m
0 1
0 \1/
1 1 1

Try it yourself:
Does the
automaton accept

(say yes) or
reject (say no)?

The Story So Far

A finite automaton is a collection of states
joined by transitions.

Some state is designated as the start state.
Some states are designated as accepting states.

The automaton processes a string by beginning in
the start state and following the indicated
transitions.

If the automaton ends in an accepting state, it
accepts the input.

Otherwise, the automaton rejects the input.

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

Accepting States, Revisited

A finite automaton does not accept as soon
as the input enters an accepting state.

A finite automaton accepts if it ends in an
accepting state.

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

No matter where we
start in The auTomaton,
atter seeing fwo 1's, we

end up in accepling
state 4.

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

What Does This Accept?

No maffer where we
start in The auTomaton,
atfer seeing two 0's,
we end up in accepting
statle 4..

What Does This Accept?

What Does This Accept?

This automaton
accepts a string itf
T ends in 00 or 1.

The language of an automaton is the
set of strings that it accepts.

If A is an automaton, we denote the
language of A as AA).

Intuitively:

HAA) ={weX*|Aaccepts w }

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

A Small Problem

Problem??

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Another Small Problem

Problem??

The Need for Formalism

e In order to reason about the limits of
what finite automata can and cannot do,

we need to formally specify their behavior
in all cases.

« All of the following need to be defined or
disallowed:

« What happens if there is no transition out of
a state on some input?

« What happens if there are multiple
transitions out of a state on some input?

DFAs

« ADFAis a

e Deterministic
 Finite
e Automaton

« DFAs are the simplest type of automaton
that we will see in this course.

DFAs, Informally

« A DFA is defined relative to some
alphabet .

* For each state in the DFA, there must be
exactly one transition defined for each
symbol in the alphabet.

e This is the “deterministic” part of DFA.
 There is a unique start state.

 There may be multiple accepting states.

Is this a DFA?

Is this a DFA?

0

Is this a DFA?

Is this a DFA?

Is this a DFA?

Is this a DFA?

Is this a DFA?

Is this a DFA?

Is this a DFA?

start 0 0, 1 0

0, 1 0, 1

Is this a DFA?

Is this a DFA?

Is this a DFA?

Is this a DFA?

Is this a DFA?

Is this a DFA?

R s

..::_ 7

Drinking Family of Aardvarks

Designing DFAS

« At each point in its execution, the DFA
can only remember what state it is in.

A good way to design DFAs is to think
about what information you would need
to pick up where you left off.

« Each state acts as a “memento” of what
you're supposed to do next.

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

start

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

start 0
()

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

start 0 0
OO

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

start 0 0
OO

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

1
start 0 0
OREOREO

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

1

start 0 0
©))

1

Recognizing Languages with DFAs

L ={we{0,1}*|wcontains 00 as a substring }

1

’O,
start 0 0
o) (&,

1

1

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

YES NO
01 1
0001 001

0101010001 00001

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

start

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

start 0
()

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

start 0
D ©
0,1
1
//”———_—€=, "l:!I!h’
0, 1

States like these
are called dead

states.,

Recognizing Languages with DFAs

L ={we {0, 1}* all even-numbered digits of w are O }

start 0
0, 1
1
<o

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206

