
  

Mathematical Logic
Part Three



  

Friday Four Square!
Today at 4:15PM, Outside Gates



  

Announcements

● Problem Set 3 due right now.
● Problem Set 4 goes out today.

● Checkpoint due Monday, October 22.
● Remainder due Friday, October 26.
● Play around with propositional and first-

order logic!



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about 

multiple objects simultaneously.



  

Quantifiers

● A statement of the form ∀x. ψ asserts that for 
every choice of x in our domain, ψ is true.

● A statement of the form ∃x. ψ asserts that for 
some choice of x in our domain, ψ is true.

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.



  

Translating into First-Order Logic

● First-order logic has great expressive 
power and is often used to formally 
encode mathematical definitions.

● Let's go provide rigorous definitions for 
the terms we've been using so far.



  

Set Theory

“The union of two sets is the set 
containing all elements of both sets.”

∀S. ∀T. (Set(S) ∧ Set(T) →
∀x. (x ∈ S ∪ T ↔ x ∈ S ∨ x ∈ T))



  

Set Theory

“The intersection of two sets is the set 
containing all elements of both sets.”

∀S. ∀T. (Set(S) ∧ Set(T) →
∀x. (x ∈ S ∩ T ↔ x ∈ S ∧ x ∈ T))



  

Relations

“R is a reflexive relation over A.”

∀a ∈ A. aRa



  

Relations

“R is a symmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Relations

“R is an antisymmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb ∧ bRa → a = b)



  

Relations

“R is a transitive relation over A.”

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

Negating Quantifiers

● We spent much of last lecture discussing 
how to negate propositional constructs.

● How do we negate quantifiers?



  

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Negating Quantifiers

● What is the negation of the following 
statement?

∀x. ∃y. (P(x) → Q(y))
● We can obtain it as follows:

¬∀x. ∃y. (P(x) → Q(y))

∃x.¬∃y. (P(x) → Q(y))

∃x.∀y. ¬(P(x) → Q(y))

∃x.∀y. (P(x) ∧ ¬Q(y))



  

Analyzing Relations

“R is a binary relation over set A that is not 
reflexive”

¬∀a ∈ A. aRa
∃a ∈ A. ¬aRa

“Some a ∈ A is not related to itself by R.”



  

Analyzing Relations

“R is a binary relation over A that is not 
antisymmetric”

¬∀x ∈ A. ∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ¬∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ∃y ∈ A. ¬(xRy ∧ yRx → x = y)

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ ¬(x = y))
∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ x ≠ y)

“Some x ∈ A and y ∈ A are related to one 
another by R, but are not equal”



  

A Useful Equivalence

● The following equivalences are useful when 
negating statements in first-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q
● These identities are useful when negating 

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.



  

Negating Quantifiers

● What is the negation of the following 
statement?

∃x. ∀y. (P(x) ∧ Q(y))
● We can obtain it as follows:

¬∃x. ∀y. (P(x) ∧ Q(y))

∀x.¬∀y. (P(x) ∧ Q(y))

∀x. ∃y. ¬(P(x) ∧ Q(y))

∀x. ∃y. (P(x) → ¬Q(y))



  

Using the predicates

   - Tourn(T), which states that T is a tournament,
   - p  ∈ T, which states that p is a player in tournament T, and
   - Beats(p

1
, p

2
), which states that p

1
 beat p

2
,

Write a sentence in first-order logic that means “Every tournament has 
a tournament winner.”



  

Every tournament has a tournament winner.

    ∀T. (Tourn(T) →
                (∃w ∈ T. 
                    (∀p ∈ T.
                         (p ≠ w → 
                             (Beats(w, p) ∨
                                 (∃p' ∈ T.
                                     (Beats(w, p') ∧ Beats(p', p))
                                 )
                              )
                          )
                     )
                 )
            )

There is some tournament graph where
    for each player w,
        there is some other player p who w didn't beat and
             for each player p'
                 if that w beat p', then p' did not beat p.



  

Every tournament has a tournament winner.

    ¬∀T. (Tourn(T) →
                (∃w ∈ T. 
                    (∀p ∈ T.
                         (p ≠ w → 
                             (Beats(w, p) ∨
                                 (∃p' ∈ T.
                                     (Beats(w, p') ∧ Beats(p', p))
                                 )
                              )
                          )
                     )
                 )
            )

There is some tournament graph where
    for each player w,
        there is some other player p who w didn't beat and
             for each player p'
                 if that w beat p', then p' did not beat p.



  

Every tournament has a tournament winner.

    ∃T. (Tourn(T) ∧
                (∀w ∈ T. 
                    (∃p ∈ T.
                         (p ≠ w ∧
                             (¬Beats(w, p) ∧
                                 (∀p' ∈ T.
                                     (Beats(w, p') → ¬Beats(p', p))
                                 )
                              )
                          )
                     )
                 )
            )

There is some tournament graph where
    for each player w,
        there is some other player p who w didn't beat and
             for each player p'
                 if that w beat p', then p' did not beat p.



  

Every tournament has a tournament winner.

    ∃T. (Tourn(T) ∧
                (∀w ∈ T. 
                    (∃p ∈ T.
                         (p ≠ w ∧
                             (¬Beats(w, p) ∧
                                 (∀p' ∈ T.
                                     (Beats(w, p') → ¬Beats(p', p))
                                 )
                              )
                          )
                     )
                 )
            )

There is some tournament where
    for each player w,
        there is some other player p who w didn't beat and
             for each player p'
                 if w beat p', then p' did not beat p.



  

Uniqueness



  

Uniqueness

● Often, statements have the form “there is a 
unique x such that …”

● Some sources use a uniqueness quantifier to 
express this:

∃!n. P(n)
● However, it's possible to encode uniqueness 

using just the two quantifiers we've seen.

∃!n. P(n) ≡ ∃n. (P(n) ∧ ∀m. (P(m) → m = n))
● In CS103, do not use the ∃! quantifier.  Just use 

∃ and ∀.



  

Summary of First-Order Logic

● Predicates allow us to reason about 
different properties of the same object.

● Functions allow us to transform objects 
into one another.

● Quantifiers allow us to reason about 
properties of some or all objects.

● There are many useful identities for 
negating first-order formulae.



  

SAT Solving



  

Back to Propositional Logic...

∀

∃

P(x)



  

Is This Formula Ever True?

p ∨ ¬p



  

Is This Formula Ever True?

p ∧ ¬p



  

Is This Formula Ever True?

(r → s → t) ∧ (s → t → r) ∧ (t → r → s) ∧ t ∧ ¬s



  

Is This Formula Ever True?

(x0 → (x1 ↔ x0)) ∨ (x2 ∧ x1 ∧ ¬x0) ∨ (x1 → ¬x1)



  

Satisfiability

● A propositional logic formula φ is called satisfiable if 
there is some assignment to its variables that makes it 
evaluate to true.

● An assignment of true and false to the variables of φ 
that makes it evaluate to true is called a satisfying 
assignment.

● Similar terms:
● φ is tautological if every variable assignment is a satisfying 

assignment.
● φ is satisfiable if some variable assignment is a satisfying 

assignment.
● φ is unsatisfiable if no variable assignment is a satisfying 

assignment.



  

SAT

● The boolean satisfiability problem (SAT) is 
the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Note: Goal is just to get a yes/no answer, not to 
actually find a satisfying assignment.
● It's possible to extract a satisfying assignment if you 

know one exists; you're asked to prove this in the 
problem set.

● Extremely important problem both in theory 
and in practice.



  

Applications of SAT



  

http://saturn.stanford.edu/

http://saturn.stanford.edu/


  

http://games.stanford.edu

http://games.stanford.edu/


  



  

Solving SAT: Take One



  

A Simple Algorithm

● Given a formula φ, we can just build a 
truth table for φ and check all of the 
rows.

● If any of them evaluate to true, then φ is 
satisfiable.

● If none of them evaluate to true, then φ is 
unsatisfiable.

● So what might this look like?



  

The Truth Table Algorithm
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The Truth Table Algorithm
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A Large Problem

● Truth tables can get very big very 
quickly!

● With n variables, there will be 2n rows.
● Many real-word SAT instances have 

hundreds of thousands of variables; this 
is completely infeasible!



  

Clause-Based Algorithms



  

Simplifying Our Formulas

● Arbitrary formulas in propositional logic 
can be complex.
● Lots of different connectives.
● Arbitrary nesting of formulas.

● Can be difficult to see how they all 
interrelate.

● Goal: Convert formulas into a simpler 
format.



  

Literals and Clauses
● A literal in propositional logic is a 

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction) 
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)



  

Conjunctive Normal Form

● A propositional logic formula φ is in 
conjunctive normal form (CNF) if it is 
the many-way AND (conjunction) of 
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

Each clause must have 
at least one

true literal in it.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

We should pick at least one
true literal from each clause



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

… subject to the constraint that
we never choose a literal

and its negation



  

Getting to CNF

● There are excellent algorithms for solving 
SAT formulas in CNF.

● How do we convert an arbitrary 
propositional logic formula into a formula in 
CNF?

● Outline:
● Turn any formula into a “mezzanine” format 

called NNF.
● Convert NNF formulas into CNF formulas.
● Details at the end of these slides.



  

SAT for CNF Formulas:
A Simple Backtracking Algorithm



  

Backtracking SAT Solving

● If φ is an empty set of clauses, return true.
● All clauses are satisfied.

● If φ contains ( ), return false.
● Some clause is unsatisfiable.

● Otherwise:
● Choose some variable x.

● Return whether φ¬x is satisfiable or φx is 
satisfiable, where φ¬x is φ with x set to false and φx 
is φ with x set to true.



  

Analyzing Backtracking

● The backtracking solver works reasonably 
well on most inputs.
● Low memory usage – just need to remember one 

potential path along the tree.
● For formulas with many satisfying assignments, 

typically finds one very quickly.

● But it has its weaknesses.
● Completely blind searching – might miss “obvious” 

choices.
● In the worst-case, must explore the entire tree, 

which has 2n leaves for n variables.



  

Adding Heuristics

● A heuristic is an approach to solving a 
problem that may or may not work 
correctly.
● Contrast with an algorithm, which has 

definitive guarantees on its behavior.

● The simplicity of CNF makes it possible 
to add heuristics to our backtracking 
solver.

● What sorts of heuristics might we add?



  

Pure Literal Elimination

● A literal is called pure if its negation 
appears nowhere in the formula.

● Setting that literal to true will satisfy 
some number of clauses automatically 
and simplify the formula.

● Many formulas can be satisfied by 
iteratively applying pure literal 
elimination.



  

Unit Propagation

● A unit clause is a clause containing just 
one literal.

● For the formula to be true, that literal 
must be set to true.

● This might expose other unit clauses.



  

DPLL

● The DPLL algorithm is a modification of 
the simple backtracking search 
algorithm.
● Named for Davis, Putnam, Logemann, and 

Loveland, its inventors.

● Incorporates the two heuristics we just 
saw.



  

DPLL

● Simplify φ with unit propagation.
● Simplify φ with pure literal elimination.
● If φ is empty, return true.
● If φ contains ( ), return false.
● Otherwise:

● Choose some variable x.

● Return whether φ¬x is satisfiable or φx is 
satisfiable, where φ¬x is φ with x set to false and 
φx is φ with x set to true.



  

DPLL is Powerful

● DPLL was invented 50 years and three 
months ago, but is still the basis for most 
SAT solvers.

● The two heuristics aggressively simplify 
many common cases.

● However, still has an exponential worst-
case runtime.



  

How hard is SAT?

We'll see more on this later on...



  

An Important 
Milestone



  

Recap: Discrete Mathematics

● The past four weeks have focused exclusively on 
discrete mathematics:

 Induction       Functions

 Graphs        The Pigeonhole Principle

 Relations       Logic

 Set Theory      Cardinality

● These are the building blocks we will use 
throughout the rest of the quarter.

● These are the building blocks you will use 
throughout the rest of your CS career.



  

Next Up: Computability Theory

● It's time to switch gears and address the limits of 
what can be computed.

● We'll explore
● What is the formal definition of a computer?
● What might computers look like with various resource 

constraints?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of what 
computers could ever be made to do.



  

Next Time

● Formal Languages
● What is the mathematical definition of a 

problem?

● Finite Automata
● What does a mathematical model of a 

computer look like?



  

Appendix: Getting to CNF



  

● A formula φ in propositional logic is in negation 
normal form (NNF) iff
● The only connectives are ¬, ∨, and ∧.
● ¬ is only applied directly to variables.

● Examples:
● (a ∧ (b ∨ ¬c)) ∨ (d ∧ ¬a)
● a ∨ b ∨ ¬c

● Non-Examples:
● ¬(a ∧ b)
● a → (¬b ∨ c)
● ¬¬a ∨ ¬b ∧ ¬c

Negation Normal Form



  

Getting to NNF

● NNF is a stepping stone toward CNF:
● Only have ∨, ∧, and ¬.
● All negations pushed onto variables.

● Build an algorithm to get from arbitrary 
propositional logic down to NNF.

● Our conversion process will work as 
follows:
● Eliminate complex connectives.
● Simplify negations.



  

Eliminating Complex Connectives

● NNF only allows ∧, ∨, ¬.
● First step: Replace other connectives with 

these three.
● Replace φ → ψ with (¬φ ∨ ψ).
● Can also replace ↔, ⊤, and ⊥ with formulas 

just using ∧, ∨, and ¬; you'll do this in the 
problem set. ☺

● Result: A new formula that is logically 
equivalent to the original and not much 
bigger.



  

Eliminating Complex Connectives

¬(p ∧ q ∧ r) → ¬(s → ¬t ∨ q)
¬¬(p ∧ q ∧ r) ∨ ¬(s → ¬t ∨ q)

¬¬(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)



  

Simplifying Negations

● NNF only allows negations in front of variables.
● Now that we have just ∨, ∧, and ¬, repeatedly 

apply these rules to achieve this result:
● Replace ¬¬φ with φ
● Replace ¬(φ ∧ ψ) with ¬φ ∨ ¬ψ
● Replace ¬(φ ∨ ψ) with ¬φ ∧ ¬ψ

● This process eventually terminates; the “height” 
of the negations keeps decreasing.



  

Simplifying Negations

¬¬(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)
(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)

(p ∧ q ∧ r) ∨ (¬¬s ∧ ¬¬t ∧ ¬q)
(p ∧ q ∧ r) ∨ (s ∧ t ∧ ¬q)



  

From NNF to CNF

● Now that we can get to NNF, let's get 
down to CNF.

● Recall: CNF is the conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x4) ∧ … 

● We'll use an inductive approach to 
convert NNF into CNF.



  

From NNF to CNF

● Every NNF formula is either
● A literal,
● The conjunction of two NNF formulas: φ ∧ ψ
● The disjunction of two NNF formulas: φ ∨ ψ

● Let's work through some examples and 
see if we can find a pattern.



  

Examples: NNF to CNF

(x ∨ y ∨ z ∨ ¬w) ∧ (¬x ∨ ¬y)



  

Examples: NNF to CNF

x ∨ (y ∧ z)
(x ∨ y) ∧ (x ∨ z)
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Examples: NNF to CNF

(w ∧ x) ∨ (y ∧ z)
((w ∧ x) ∨ y) ∧ ((w ∧ x) ∨ z)

(w ∨ y) ∧ (x ∨ y) ∧ (w ∨ z) ∧ (x ∨ z)



  

Examples: NNF to CNF

(v ∧ w ∧ x) ∨ (y ∧ z)
((v ∧ w ∧ x) ∨ y) ∧ ((v ∧ w ∧ x) ∧ z)

((v ∧ w) ∨ y) ∧ (x ∨ y)  ∧ ((v ∧ w) ∨ z) ∧ (x ∨ z)
(v ∨ y) ∧ (w ∨ y) ∧ (x ∨ y) ∧ (v ∨ z) ∧ (w ∨ z) ∧ (y ∨ z)



  

Converting NNF to CNF

● Apply the following reasoning inductively:
● If the formula is a literal, do nothing.
● If the formula is φ ∧ ψ:

– Convert φ and ψ to CNF, call it φ' and ψ'.
– Yield φ' ∧ ψ'

● If the formula is φ ∨ ψ:
– Convert φ and ψ to CNF, call it φ' and ψ'.
– Repeatedly apply the distributive law

x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z) to φ' ∨ ψ' until 
simplified.



  

A Problem

(a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f) ∨ (g ∧ h)

((a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d))
∨

(e ∧ f) ∨ (g ∧ h)

((a ∨ c ∨ e) ∧ (a ∨ c ∨ f) ∧ (a ∨ d ∨ e) ∧ (a ∨ d ∨ f) ∧)
((b ∨ c ∨ e) ∧ (b ∨ c ∨ f) ∧ (b ∨ d ∨ e) ∧ (b ∨ d ∨ f)) ∧

∨
(g ∧ h)

(a ∨ c ∨ e ∨ g) ∧ (a ∨ c ∨ f ∨ g) ∧ (a ∨ d ∨ e ∨ g) ∧ (a ∨ d ∨ f ∨ g)
∧ (b ∨ c ∨ e ∨ g) ∧ (b ∨ c ∨ f ∨ g) ∧ (b ∨ d ∨ e ∨ g) ∧ (b ∨ d ∨ f ∨ g)
∧ (a ∨ c ∨ e ∨ h) ∧ (a ∨ c ∨ f ∨ h) ∧ (a ∨ d ∨ e ∨ h) ∧ (a ∨ d ∨ f ∨ h)

∧ (b ∨ c ∨ e ∨ h) ∧ (b ∨ c ∨ f ∨ h) ∧ (b ∨ d ∨ e ∨ h) ∧ (b ∨ d ∨ f ∨ h) ∧



  

Exponential Blowup

● Our logic for eliminating ∨ can lead to 
exponential size increases.

● Not a problem with the algorithm; some 
formulas produce exponentially large 
CNF formulas.

● We will need to find another approach.



  

Equivalence and Equisatisfiability

● Recall: Two logical formulas φ and ψ are 
are equivalent (denoted φ ≡ ψ) if they 
always take on the same truth values.

● Two logical formulas φ and ψ are 
equisatisfiable (denoted φ  ψ≅ ) if φ is 
satisfiable iff ψ is satisfiable.
● Either φ and ψ are satisfiable, or φ and ψ are 

unsatisfiable.
● To solve SAT for a formula φ, we can 

instead solve SAT for an equisatisfiable ψ.



  

Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )∨∨



  

Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )∨∨



  

Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )∨∨

( a∧b∧¬c )



  

Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )

(

∨∨

)∧ ( )∧ ( ))a b ¬c



  

Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )

(

∨∨

)∧ ( )∧ ( ))a b ¬cq∨ q∨q∨



  

Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )

(

∨∨

)∧ ( )∧ ( ))a b ¬cq∨ q∨q∨

( ¬a∧c )



  

Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )

(

∨∨

)∧ ( )∧ ( ))a b ¬cq∨ q∨q∨

( ¬a )∧ ( c )
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Equisatisfiably from NNF to CNF

● If the formula is a literal, do nothing.
● If the formula is φ ∧ ψ:

● Convert φ and ψ to CNF, call it φ' and ψ'.
● Yield φ' ∧ ψ'

● If the formula is φ ∨ ψ:
● Convert φ and ψ to CNF, call it φ' and ψ'.
● Create a new variable q.
● Add q to each clause of φ'.
● Add ¬q to each clause of ψ'.
● Yield φ' ∧ ψ'.

● Adds at most n new variables to each clause, where n is 
the number of clauses.  Size increase at worst quadratic.
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