

Mathematical Logic
Part Three

Friday Four Square!
Today at 4:15PM, Outside Gates

Announcements

● Problem Set 3 due right now.
● Problem Set 4 goes out today.

● Checkpoint due Monday, October 22.
● Remainder due Friday, October 26.
● Play around with propositional and first-

order logic!

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about

multiple objects simultaneously.

Quantifiers

● A statement of the form ∀x. ψ asserts that for
every choice of x in our domain, ψ is true.

● A statement of the form ∃x. ψ asserts that for
some choice of x in our domain, ψ is true.

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.

Translating into First-Order Logic

● First-order logic has great expressive
power and is often used to formally
encode mathematical definitions.

● Let's go provide rigorous definitions for
the terms we've been using so far.

Set Theory

“The union of two sets is the set
containing all elements of both sets.”

∀S. ∀T. (Set(S) ∧ Set(T) →
∀x. (x ∈ S ∪ T ↔ x ∈ S ∨ x ∈ T))

Set Theory

“The intersection of two sets is the set
containing all elements of both sets.”

∀S. ∀T. (Set(S) ∧ Set(T) →
∀x. (x ∈ S ∩ T ↔ x ∈ S ∧ x ∈ T))

Relations

“R is a reflexive relation over A.”

∀a ∈ A. aRa

Relations

“R is a symmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb → bRa)

Relations

“R is an antisymmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb ∧ bRa → a = b)

Relations

“R is a transitive relation over A.”

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)

Negating Quantifiers

● We spent much of last lecture discussing
how to negate propositional constructs.

● How do we negate quantifiers?

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.

Negating Quantifiers

● What is the negation of the following
statement?

∀x. ∃y. (P(x) → Q(y))
● We can obtain it as follows:

¬∀x. ∃y. (P(x) → Q(y))

∃x.¬∃y. (P(x) → Q(y))

∃x.∀y. ¬(P(x) → Q(y))

∃x.∀y. (P(x) ∧ ¬Q(y))

Analyzing Relations

“R is a binary relation over set A that is not
reflexive”

¬∀a ∈ A. aRa
∃a ∈ A. ¬aRa

“Some a ∈ A is not related to itself by R.”

Analyzing Relations

“R is a binary relation over A that is not
antisymmetric”

¬∀x ∈ A. ∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ¬∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ∃y ∈ A. ¬(xRy ∧ yRx → x = y)

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ ¬(x = y))
∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ x ≠ y)

“Some x ∈ A and y ∈ A are related to one
another by R, but are not equal”

A Useful Equivalence

● The following equivalences are useful when
negating statements in first-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q
● These identities are useful when negating

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

Negating Quantifiers

● What is the negation of the following
statement?

∃x. ∀y. (P(x) ∧ Q(y))
● We can obtain it as follows:

¬∃x. ∀y. (P(x) ∧ Q(y))

∀x.¬∀y. (P(x) ∧ Q(y))

∀x. ∃y. ¬(P(x) ∧ Q(y))

∀x. ∃y. (P(x) → ¬Q(y))

Using the predicates

 - Tourn(T), which states that T is a tournament,
 - p ∈ T, which states that p is a player in tournament T, and
 - Beats(p

1
, p

2
), which states that p

1
 beat p

2
,

Write a sentence in first-order logic that means “Every tournament has
a tournament winner.”

Every tournament has a tournament winner.

 ∀T. (Tourn(T) →
 (∃w ∈ T.
 (∀p ∈ T.
 (p ≠ w →
 (Beats(w, p) ∨
 (∃p' ∈ T.
 (Beats(w, p') ∧ Beats(p', p))
)
)
)
)
)
)

There is some tournament graph where
 for each player w,
 there is some other player p who w didn't beat and
 for each player p'
 if that w beat p', then p' did not beat p.

Every tournament has a tournament winner.

 ¬∀T. (Tourn(T) →
 (∃w ∈ T.
 (∀p ∈ T.
 (p ≠ w →
 (Beats(w, p) ∨
 (∃p' ∈ T.
 (Beats(w, p') ∧ Beats(p', p))
)
)
)
)
)
)

There is some tournament graph where
 for each player w,
 there is some other player p who w didn't beat and
 for each player p'
 if that w beat p', then p' did not beat p.

Every tournament has a tournament winner.

 ∃T. (Tourn(T) ∧
 (∀w ∈ T.
 (∃p ∈ T.
 (p ≠ w ∧
 (¬Beats(w, p) ∧
 (∀p' ∈ T.
 (Beats(w, p') → ¬Beats(p', p))
)
)
)
)
)
)

There is some tournament graph where
 for each player w,
 there is some other player p who w didn't beat and
 for each player p'
 if that w beat p', then p' did not beat p.

Every tournament has a tournament winner.

 ∃T. (Tourn(T) ∧
 (∀w ∈ T.
 (∃p ∈ T.
 (p ≠ w ∧
 (¬Beats(w, p) ∧
 (∀p' ∈ T.
 (Beats(w, p') → ¬Beats(p', p))
)
)
)
)
)
)

There is some tournament where
 for each player w,
 there is some other player p who w didn't beat and
 for each player p'
 if w beat p', then p' did not beat p.

Uniqueness

Uniqueness

● Often, statements have the form “there is a
unique x such that …”

● Some sources use a uniqueness quantifier to
express this:

∃!n. P(n)
● However, it's possible to encode uniqueness

using just the two quantifiers we've seen.

∃!n. P(n) ≡ ∃n. (P(n) ∧ ∀m. (P(m) → m = n))
● In CS103, do not use the ∃! quantifier. Just use

∃ and ∀.

Summary of First-Order Logic

● Predicates allow us to reason about
different properties of the same object.

● Functions allow us to transform objects
into one another.

● Quantifiers allow us to reason about
properties of some or all objects.

● There are many useful identities for
negating first-order formulae.

SAT Solving

Back to Propositional Logic...

∀

∃

P(x)

Is This Formula Ever True?

p ∨ ¬p

Is This Formula Ever True?

p ∧ ¬p

Is This Formula Ever True?

(r → s → t) ∧ (s → t → r) ∧ (t → r → s) ∧ t ∧ ¬s

Is This Formula Ever True?

(x0 → (x1 ↔ x0)) ∨ (x2 ∧ x1 ∧ ¬x0) ∨ (x1 → ¬x1)

Satisfiability

● A propositional logic formula φ is called satisfiable if
there is some assignment to its variables that makes it
evaluate to true.

● An assignment of true and false to the variables of φ
that makes it evaluate to true is called a satisfying
assignment.

● Similar terms:
● φ is tautological if every variable assignment is a satisfying

assignment.
● φ is satisfiable if some variable assignment is a satisfying

assignment.
● φ is unsatisfiable if no variable assignment is a satisfying

assignment.

SAT

● The boolean satisfiability problem (SAT) is
the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Note: Goal is just to get a yes/no answer, not to
actually find a satisfying assignment.
● It's possible to extract a satisfying assignment if you

know one exists; you're asked to prove this in the
problem set.

● Extremely important problem both in theory
and in practice.

Applications of SAT

http://saturn.stanford.edu/

http://saturn.stanford.edu/

http://games.stanford.edu

http://games.stanford.edu/

Solving SAT: Take One

A Simple Algorithm

● Given a formula φ, we can just build a
truth table for φ and check all of the
rows.

● If any of them evaluate to true, then φ is
satisfiable.

● If none of them evaluate to true, then φ is
unsatisfiable.

● So what might this look like?

The Truth Table Algorithm

p p ¬p∨

F

T

F

T F

TT

T

The Truth Table Algorithm

q (p → q) q∧

F

T

p

F

F

F

T

T

T

T

T

F

T

F

T

F

T

F

T

F

T

q (r ↔ q) r p ¬q∧ ∧ ∧

F
T

p
F
F

F
T

T
T

F
T

F
F

F
T

T
T

F
F

T
T

F
F

T
T

r
T
F
F
T
T
F
F
T

F
T
F
T
F
T
F
T

F
F

T
T

F
F

T
T

T
T
F
F
T
T
F
F

F
F
F
F
F
F
F
F

A Large Problem

● Truth tables can get very big very
quickly!

● With n variables, there will be 2n rows.
● Many real-word SAT instances have

hundreds of thousands of variables; this
is completely infeasible!

Clause-Based Algorithms

Simplifying Our Formulas

● Arbitrary formulas in propositional logic
can be complex.
● Lots of different connectives.
● Arbitrary nesting of formulas.

● Can be difficult to see how they all
interrelate.

● Goal: Convert formulas into a simpler
format.

Literals and Clauses
● A literal in propositional logic is a

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction)
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)

Conjunctive Normal Form

● A propositional logic formula φ is in
conjunctive normal form (CNF) if it is
the many-way AND (conjunction) of
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

Each clause must have
at least one

true literal in it.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

We should pick at least one
true literal from each clause

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

… subject to the constraint that
we never choose a literal

and its negation

Getting to CNF

● There are excellent algorithms for solving
SAT formulas in CNF.

● How do we convert an arbitrary
propositional logic formula into a formula in
CNF?

● Outline:
● Turn any formula into a “mezzanine” format

called NNF.
● Convert NNF formulas into CNF formulas.
● Details at the end of these slides.

SAT for CNF Formulas:
A Simple Backtracking Algorithm

Backtracking SAT Solving

● If φ is an empty set of clauses, return true.
● All clauses are satisfied.

● If φ contains (), return false.
● Some clause is unsatisfiable.

● Otherwise:
● Choose some variable x.

● Return whether φ¬x is satisfiable or φx is
satisfiable, where φ¬x is φ with x set to false and φx
is φ with x set to true.

Analyzing Backtracking

● The backtracking solver works reasonably
well on most inputs.
● Low memory usage – just need to remember one

potential path along the tree.
● For formulas with many satisfying assignments,

typically finds one very quickly.

● But it has its weaknesses.
● Completely blind searching – might miss “obvious”

choices.
● In the worst-case, must explore the entire tree,

which has 2n leaves for n variables.

Adding Heuristics

● A heuristic is an approach to solving a
problem that may or may not work
correctly.
● Contrast with an algorithm, which has

definitive guarantees on its behavior.

● The simplicity of CNF makes it possible
to add heuristics to our backtracking
solver.

● What sorts of heuristics might we add?

Pure Literal Elimination

● A literal is called pure if its negation
appears nowhere in the formula.

● Setting that literal to true will satisfy
some number of clauses automatically
and simplify the formula.

● Many formulas can be satisfied by
iteratively applying pure literal
elimination.

Unit Propagation

● A unit clause is a clause containing just
one literal.

● For the formula to be true, that literal
must be set to true.

● This might expose other unit clauses.

DPLL

● The DPLL algorithm is a modification of
the simple backtracking search
algorithm.
● Named for Davis, Putnam, Logemann, and

Loveland, its inventors.

● Incorporates the two heuristics we just
saw.

DPLL

● Simplify φ with unit propagation.
● Simplify φ with pure literal elimination.
● If φ is empty, return true.
● If φ contains (), return false.
● Otherwise:

● Choose some variable x.

● Return whether φ¬x is satisfiable or φx is
satisfiable, where φ¬x is φ with x set to false and
φx is φ with x set to true.

DPLL is Powerful

● DPLL was invented 50 years and three
months ago, but is still the basis for most
SAT solvers.

● The two heuristics aggressively simplify
many common cases.

● However, still has an exponential worst-
case runtime.

How hard is SAT?

We'll see more on this later on...

An Important
Milestone

Recap: Discrete Mathematics

● The past four weeks have focused exclusively on
discrete mathematics:

 Induction Functions

 Graphs The Pigeonhole Principle

 Relations Logic

 Set Theory Cardinality

● These are the building blocks we will use
throughout the rest of the quarter.

● These are the building blocks you will use
throughout the rest of your CS career.

Next Up: Computability Theory

● It's time to switch gears and address the limits of
what can be computed.

● We'll explore
● What is the formal definition of a computer?
● What might computers look like with various resource

constraints?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of what
computers could ever be made to do.

Next Time

● Formal Languages
● What is the mathematical definition of a

problem?

● Finite Automata
● What does a mathematical model of a

computer look like?

Appendix: Getting to CNF

● A formula φ in propositional logic is in negation
normal form (NNF) iff
● The only connectives are ¬, ∨, and ∧.
● ¬ is only applied directly to variables.

● Examples:
● (a ∧ (b ∨ ¬c)) ∨ (d ∧ ¬a)
● a ∨ b ∨ ¬c

● Non-Examples:
● ¬(a ∧ b)
● a → (¬b ∨ c)
● ¬¬a ∨ ¬b ∧ ¬c

Negation Normal Form

Getting to NNF

● NNF is a stepping stone toward CNF:
● Only have ∨, ∧, and ¬.
● All negations pushed onto variables.

● Build an algorithm to get from arbitrary
propositional logic down to NNF.

● Our conversion process will work as
follows:
● Eliminate complex connectives.
● Simplify negations.

Eliminating Complex Connectives

● NNF only allows ∧, ∨, ¬.
● First step: Replace other connectives with

these three.
● Replace φ → ψ with (¬φ ∨ ψ).
● Can also replace ↔, ⊤, and ⊥ with formulas

just using ∧, ∨, and ¬; you'll do this in the
problem set. ☺

● Result: A new formula that is logically
equivalent to the original and not much
bigger.

Eliminating Complex Connectives

¬(p ∧ q ∧ r) → ¬(s → ¬t ∨ q)
¬¬(p ∧ q ∧ r) ∨ ¬(s → ¬t ∨ q)

¬¬(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)

Simplifying Negations

● NNF only allows negations in front of variables.
● Now that we have just ∨, ∧, and ¬, repeatedly

apply these rules to achieve this result:
● Replace ¬¬φ with φ
● Replace ¬(φ ∧ ψ) with ¬φ ∨ ¬ψ
● Replace ¬(φ ∨ ψ) with ¬φ ∧ ¬ψ

● This process eventually terminates; the “height”
of the negations keeps decreasing.

Simplifying Negations

¬¬(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)
(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)

(p ∧ q ∧ r) ∨ (¬¬s ∧ ¬¬t ∧ ¬q)
(p ∧ q ∧ r) ∨ (s ∧ t ∧ ¬q)

From NNF to CNF

● Now that we can get to NNF, let's get
down to CNF.

● Recall: CNF is the conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x4) ∧ …

● We'll use an inductive approach to
convert NNF into CNF.

From NNF to CNF

● Every NNF formula is either
● A literal,
● The conjunction of two NNF formulas: φ ∧ ψ
● The disjunction of two NNF formulas: φ ∨ ψ

● Let's work through some examples and
see if we can find a pattern.

Examples: NNF to CNF

(x ∨ y ∨ z ∨ ¬w) ∧ (¬x ∨ ¬y)

Examples: NNF to CNF

x ∨ (y ∧ z)
(x ∨ y) ∧ (x ∨ z)

y x ∨ (y z∧)

F
T

x
F
F

F
T

T
T

F
T

F
F

F
T

T
T

F
F

T
T

F
F

T
T

z
F
F

T
T

F
F

T
T

F
T

T
T

F
T

T
T

F
F

T
T

F
T

T
T

(x ∨ y) (∧ x ∨ z)

F
F

T
T

T
T

T
T

F
F

F
F

F
T

F
T

F
F

T
T

F
T

T
T

F
F

T
T

F
T

T
T

F
F

T
T

F
T

T
T

Examples: NNF to CNF

(w ∧ x) ∨ (y ∧ z)
((w ∧ x) ∨ y) ∧ ((w ∧ x) ∨ z)

(w ∨ y) ∧ (x ∨ y) ∧ (w ∨ z) ∧ (x ∨ z)

Examples: NNF to CNF

(v ∧ w ∧ x) ∨ (y ∧ z)
((v ∧ w ∧ x) ∨ y) ∧ ((v ∧ w ∧ x) ∧ z)

((v ∧ w) ∨ y) ∧ (x ∨ y) ∧ ((v ∧ w) ∨ z) ∧ (x ∨ z)
(v ∨ y) ∧ (w ∨ y) ∧ (x ∨ y) ∧ (v ∨ z) ∧ (w ∨ z) ∧ (y ∨ z)

Converting NNF to CNF

● Apply the following reasoning inductively:
● If the formula is a literal, do nothing.
● If the formula is φ ∧ ψ:

– Convert φ and ψ to CNF, call it φ' and ψ'.
– Yield φ' ∧ ψ'

● If the formula is φ ∨ ψ:
– Convert φ and ψ to CNF, call it φ' and ψ'.
– Repeatedly apply the distributive law

x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z) to φ' ∨ ψ' until
simplified.

A Problem

(a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f) ∨ (g ∧ h)

((a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d))
∨

(e ∧ f) ∨ (g ∧ h)

((a ∨ c ∨ e) ∧ (a ∨ c ∨ f) ∧ (a ∨ d ∨ e) ∧ (a ∨ d ∨ f) ∧)
((b ∨ c ∨ e) ∧ (b ∨ c ∨ f) ∧ (b ∨ d ∨ e) ∧ (b ∨ d ∨ f)) ∧

∨
(g ∧ h)

(a ∨ c ∨ e ∨ g) ∧ (a ∨ c ∨ f ∨ g) ∧ (a ∨ d ∨ e ∨ g) ∧ (a ∨ d ∨ f ∨ g)
∧ (b ∨ c ∨ e ∨ g) ∧ (b ∨ c ∨ f ∨ g) ∧ (b ∨ d ∨ e ∨ g) ∧ (b ∨ d ∨ f ∨ g)
∧ (a ∨ c ∨ e ∨ h) ∧ (a ∨ c ∨ f ∨ h) ∧ (a ∨ d ∨ e ∨ h) ∧ (a ∨ d ∨ f ∨ h)

∧ (b ∨ c ∨ e ∨ h) ∧ (b ∨ c ∨ f ∨ h) ∧ (b ∨ d ∨ e ∨ h) ∧ (b ∨ d ∨ f ∨ h) ∧

Exponential Blowup

● Our logic for eliminating ∨ can lead to
exponential size increases.

● Not a problem with the algorithm; some
formulas produce exponentially large
CNF formulas.

● We will need to find another approach.

Equivalence and Equisatisfiability

● Recall: Two logical formulas φ and ψ are
are equivalent (denoted φ ≡ ψ) if they
always take on the same truth values.

● Two logical formulas φ and ψ are
equisatisfiable (denoted φ ψ≅) if φ is
satisfiable iff ψ is satisfiable.
● Either φ and ψ are satisfiable, or φ and ψ are

unsatisfiable.
● To solve SAT for a formula φ, we can

instead solve SAT for an equisatisfiable ψ.

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)∨∨

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)∨∨

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)∨∨

(a∧b∧¬c)

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬c

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a∧c)

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨

(¬a)∧ (c)∨ ∨¬q ¬q

∧

Equisatisfiably from NNF to CNF

(a∧b∧¬c) (¬a∧c)∨ ∨ (a ∧¬b)

(

∨∨

)∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧¬b

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

∨ (a ∧¬b)()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧)(

()∧ ()∧ ())a b ¬cq∨ q∨q∨ (¬a)∧ (c)∨ ∨¬q ¬q∧∨ r ∨ r ∨ r ∨ r ∨ r

a ∧ ¬b(())∧ ∧¬r ¬r

∧

Equisatisfiably from NNF to CNF

● If the formula is a literal, do nothing.
● If the formula is φ ∧ ψ:

● Convert φ and ψ to CNF, call it φ' and ψ'.
● Yield φ' ∧ ψ'

● If the formula is φ ∨ ψ:
● Convert φ and ψ to CNF, call it φ' and ψ'.
● Create a new variable q.
● Add q to each clause of φ'.
● Add ¬q to each clause of ψ'.
● Yield φ' ∧ ψ'.

● Adds at most n new variables to each clause, where n is
the number of clauses. Size increase at worst quadratic.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

