Mathematical Logic
Part Three

Friday Four Square!
Today at 4:15PM, Outside Gates

Announcements

 Problem Set 3 due right now.

 Problem Set 4 goes out today.

 Checkpoint due Monday, October 22.
« Remainder due Friday, October 26.

« Play around with propositional and first-
order logic!

What is First-Order Logic?

» First-order logic is a logical system for
reasoning about properties of objects.

 Augments the logical connectives from
propositional logic with

« predicates that describe properties of
objects, and

« functions that map objects to one another,

« quantifiers that allow us to reason about
multiple objects simultaneously.

Quantifiers

« A statement of the form Vx. yy asserts that for
every choice of x in our domain, y is true.

« A statement of the form Ix. Wy asserts that for
some choice of x in our domain, vy is true.

* The syntax
VX €S. @
dx € S. @
is allowed for quantifying over sets.

Translating into First-Order Logic

» First-order logic has great expressive
power and is often used to formally
encode mathematical definitions.

e Let's go provide rigorous definitions for
the terms we've been using so far.

Set Theory

“The union of two sets is the set
containing all elements of both sets.”

Set Theory

“The union of two sets is the set
containing all elements of both sets.”

VS. VT. (Set(S) A Set(T) -
Vx.(x€eSUTeoexeSvVvxeT))

Set Theory

_WIN)
failbloy.ory

Set Theory

“The intersection of two sets is the set
containing all elements of both sets.”

Set Theory

“The intersection of two sets is the set
containing all elements of both sets.”

VS. VT. (Set(S) A Set(T) -
Vx. x€ESNTox€ES AXxET))

Relations

“R is a reflexive relation over A.”

Relations

“R is a reflexive relation over A.”

VYa € A. aRa

Relations

“R is a symmetric relation over A.”

Va € A.Vb € A. (aRb — bRa)

Relations

“R is an antisymmetric relation over A.”

VaeA. Vb eA. (aRb A bRa—- a=>b)

Relations

“R is a transitive relation over A.”

VaeA.Vb € A.Vc € A. (aRb A bRc — aRc)

Negating Quantifiers

 We spent much of last lecture discussing
how to negate propositional constructs.

« How do we negate quantifiers?

An Extremely Important Table

When is this true? When is this false?

VX. P(x)
4x. P(x)
VX. 7P(X)
Ix. 7P(x)

An Extremely Important Table

When is this true? When is this false?
Vx. P(x) For any Fc);(hxc;ice of x,
4x. P(x)
VX. 7P(X)

Ix. 7P(x)

An Extremely Important Table

When is this true? When is this false?

Vx P(X) For any Fc);(hxc;ice ofx, | For some I;:(r)\(c))ice of X,
3x. P(x)
Vx. 7P(x)

3x. 7P(x)

An Extremely Important Table

When is this true? When is this false?

For any choice of x, For some choice of x,
VX. P(X) P(x) ~P(x)

Ix P(X) For somepc(:)t\)oice of X,
VX. 7P(X)
Ix. 7P(x)

An Extremely Important Table

When is this true? When is this false?

For any choice of x, For some choice of x,
VX. P(X) P(x) ~P(x)

For some choice of x, For any choice of x,
=) P(X) P(x) ~P(x)

VX. 7P(x)
dx. 7P(x)

An Extremely Important Table

When is this true? When is this false?

For any choice of x, For some choice of x,
VX. P(X) P(x) ~P(x)

For some choice of x, For any choice of x,
=) P(X) P(x) ~P(x)

For any choice of x,
VX. 7P(x) PO

dx. 7P(x)

An Extremely Important Table

When is this true? When is this false?

For any choice of x, For some choice of x,
VX. P(X) P(x) ~P(x)

For some choice of x, For any choice of x,
=) P(X) P(x) ~P(x)

For any choice of x For some choice of x
—l) ’
VX' P(X) “P(X) P(x)

dx. 7P(x)

An Extremely Important Table

VX. P(x)
dx. P(x)
VX. 7P(X)
Ix. 7P(x)

When is this true?

When is this false?

For any choice of x,
P(x)

For some choice of x,
P (x)

For some choice of x,

P(x)

For any choice of x,
“P(x)

For any choice of x,
“P(x)

For some choice of x,
P(x)

For some choice of x,

“P(x)

An Extremely Important Table

VX. P(x)
dx. P(x)
VX. 7P(X)
Ix. 7P(x)

When is this true?

When is this false?

For any choice of x,
P(x)

For some choice of x,
P (x)

For some choice of x,

P(x)

For any choice of x,
“P(x)

For any choice of x,
“P(x)

For some choice of x,
P(x)

For some choice of x,

“P(x)

For any choice of x,
P(x)

An Extremely Important Table

When is this true? When is this false?

For any choice of x, For some choice of x,
VX. P(X) P(X) -|P(x)

For some choice of x, For any choice of x,
=) P(X) P(x) ~P(x)

For any choice of x For some choice of x
—l) ’
VX' P(X) “P(X) P(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

When is this true? When is this false?
F hoi fx,
Vx. P(x) | Foramghaiceofx | Jx. =P (x)

For some choice of x, For any choice of x,
=) P(X) P(x) ~P(x)

For any choice of x For some choice of x
—l) ’
VX' P(X) “P(X) P(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

When is this true? When is this false?
F hoi fx,
Vx. P(x) | Foramghaiceofx | Jx. =P (x)

For some choice of x, For any choice of x,
=) P(X) P(x) ~P(x)

For any choice of x For some choice of x
—l) ’
VX' P(X) “P(X) P(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

VX. P(x)
dx. P(x)
VX. 7P(X)
Ix. 7P(x)

When is this true?

When is this false?

For any choice of x,
P(x) 3x. 7P(x)
For some choice of x, For any choice of x,
P(x) =1P(x)

For any choice of x,
“P(x)

For some choice of x,
P(x)

For some choice of x,

“P(x)

For any choice of x,
P(x)

An Extremely Important Table

When is this true? When is this false?

VX. P(X) For anch);(hXc;ice of X, ax. -'P(X)

HX. P(X) For somepc(:)t\)oice of X, VX. -'P(X)

For any choice of x For some choice of x
-1 ’ ’
VX' P(X) =1P(x) P(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

When is this true? When is this false?

VX. P(X) For anch);(hXc;ice of X, ax. -'P(X)

HX. P(X) For somepc(:)t\)oice of X, VX. -'P(X)

For any choice of x For some choice of x
—l) ’
VX' P(X) “P(X) P(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

When is this true? When is this false?

VX. P(X) For anch);(hXc;ice of X, ax. -'P(X)

HX. P(X) For somePc(:)I(\)oice of x, VX. -'P(X)

For any choice of x For some choice of x
—l) ’
VX' P(X) “P(X) P(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

When is this true? When is this false?

VX. P(X) For anch);(hXc;ice of X, ax. -'P(X)
HX. P(X) For somePc(::)oice of x, vx. -'P(X)

Vx. “P(x) | Foramgacedtx | gy p(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

When is this true? When is this false?

VX. P(X) For anch);(hXc;ice of X, ax. -'P(X)
HX. P(X) For somepc(:)t\)oice of X, VX. -'P(X)

Vx. “P(x) | Foramgacedtx | gy p(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

When is this true? When is this false?

VX P(X) For any Ig(hx(;ice of x, ax. -|P(X)
HX. P(X) For somepc(:)t\)oice of X, VX. -'P(X)

Vx. “P(x) | Foramgacedtx | gy p(x)

For some choice of x, For any choice of x,
3x. 7P(x) ~P(x) P(x)

An Extremely Important Table

When is this true? When is this false?
F hoi f x,
Vx. P(X) | ™ en o | Ax.P(x)

HX. P(X) For somepc(:)t\)oice of X, VX. -'P(X)

VX. — P(X) For any choice of x, ax. P(X)

“P(x)

HX. _'P(X) For some choice of x, VX. P(X)

“P(x)

An Extremely Important Table

When is this true? When is this false?

VX. P(X) For anch);(hXc;ice of X, ax. -'P(X)
HX. P(X) For somepc(:)t\)oice of X, VX. -'P(X)
Vx. TP(x) | Forameeeeetx | Jx. P(x)

HX. — P(X) For som_ell:g:(r)\(c))ice of X, VX. P(X)

Negating First-Order Statements

« Use the equivalences
VX, @ = AXx. 7@
—dx. @ = VX, 7@
to negate quantifiers.
 Mechanically:

 Push the negation across the quantifier.
 Change the quantifier from V to d or vice-versa.

« Use techniques from propositional logic to
negate connectives.

Negating Quantifiers

 What is the negation of the following
statement?

Vx. dy. (P(x) = Q()))
« We can obtain it as follows:

—Vx. dy. (P(x) = Q(y))
Ax.—3y. (P(x) = Q1))
Ax.Vy. =(P(x) = Q(y))
Ix.Vy. (P(x) A =Q(y))

Analyzing Relations

“R is a binary relation over set A that is not
reflexive”

-Va € A. aRa
da € A. ~aRa

“Some a € A is not related to itself by R.”

Analyzing Relations

“R is a binary relation over A that is not
antisymmetric”

—Vx € A.Vy € A. xRy AN yRx - x =y)
Ix € A. =Vy € A. (XRy A yRx » X = y)
Ix € A.dy € A. = (xRy A yRx =» x = y)
Ix € A.dy € A. xRy A yRx A =(x = V))
Ix € A.dy € A. xRy A yRX AN X #)

“Some x € A and y € A are related to one
another by R, but are not equal”

A Usetul Equivalence

« The following equivalences are useful when
negating statements in first-order logic:

-(pAQ) =p- q
(P~ q) =p A q

 These identities are useful when negating
statements involving quantifiers.

* A is used in existentially-quantified statements.
e — is used in universally-quantified statements.

Negating Quantifiers

 What is the negation of the following
statement?

Ix. Vy. (P(x) A Q(y))
 We can obtain it as follows:

—3x. Vy. (P(x) A Q(V))
Vx.=Vy. (P(x) A Q@)
Vx. 3y. = (P(x) A Q(y))
Vx. dy. (P(x) = =Q(y))

Using the predicates

- Tourn(T), which states that T is a tournament,
- p € T, which states that p is a player in tournament T, and
- Beats(p_, p,), which states that p, beat p,,

Write a sentence in first-order logic that means “Every tournament has
a tournament winner.”

Every tournament has a tournament winner.

VT. (Tourn(T) -
(Aw € T.
(Vp € T.
(p#w-
(Beats(w, p) Vv
(dp' € T.
(Beats(w, p') A Beats(p', p))

Every tournament has a tournament winner.

=VT. (Tourn(T) -
(dw € T.
(Vp e T.
(p=w-
(Beats(w, p) v
(Ap' € T.
(Beats(w, p') N Beats(p', p))

Every tournament has a tournament winner.

3T. = (Tourn(T) -
(dw € T.
(Vp e T.
(p=w-
(Beats(w, p) v
(Ap' € T.
(Beats(w, p') N Beats(p', p))

Every tournament has a tournament winner.

AT. (Tourn(T) A
-(dw € T.
(Vp e T.
(p=w-
(Beats(w, p) v
(Ap' € T.
(Beats(w, p') N Beats(p', p))

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
- (Vp € T.
(p=w-
(Beats(w, p) v
(Ap' € T.
(Beats(w, p') N Beats(p', p))

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
“(p#w-
(Beats(w, p) v
(Ap' € T.
(Beats(w, p') N Beats(p', p))

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p#wWA
= (Beats(w, p) v
(Ap' € T.
(Beats(w, p') N Beats(p', p))

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p#wWA
(-Beats(w, p) A
= (dp' € T.
(Beats(w, p') N Beats(p', p))

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p#wWA
(-Beats(w, p) A
(Vp' € T.
= (Beats(w, p') A Beats(p', p))

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(Ap € T.
(p#wWA
(-Beats(w, p) A
(Vp' € T.
(Beats(w, p') = —Beats(p', p))

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p#wWA
(-Beats(w, p) A
(Vp' € T.
(Beats(w, p') =» —~Beats(p', p))

There is some tournament where

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p#wWA
(-Beats(w, p) A
(Vp' € T.
(Beats(w, p') =» —~Beats(p', p))

There is some tournament where
for each player w,

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p#wWA
(—Beats(w, p) A
(Vp' € T.
(Beats(w, p') =» —~Beats(p', p))

There is some tournament where
for each player w,
there is some player p

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p #wWA
(—Beats(w, p) A
(Vp' € T.
(Beats(w, p') = —Beats(p', p))

There is some tournament where
for each player w,
there is some other player p

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p #wWA
(—Beats(w, p) A
(Vp' € T.
(Beats(w, p') =» —~Beats(p', p))

There is some tournament where
for each player w,
there is some other player p who w didn't beat

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p #wWA
(—Beats(w, p) A
(Vp' € T.
(Beats(w, p') =» —~Beats(p', p))

There is some tournament where
for each player w,
there is some other player p who w didn't beat and
for each player p'

Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p #wWA
(—Beats(w, p) A
(Vp' € T.
(Beats(w, p') =» —~Beats(p', p))

There is some tournament where
for each player w,
there is some other player p who w didn't beat and
for each player p'
if w beat p', then p' did not beat p.

Uniqueness

Uniqueness

« Often, statements have the form “there is a
unique x such that ...”

e Some sources use a uniqueness quantifier to
express this:

3'n. P(n)

« However, it's possible to encode uniqueness
using just the two quantifiers we've seen.

d'n. P(n) = dn. (P(n) A VM. (P(m) - m = n))

/‘

And whenever P is
frue, it must be tor n.

There 1s some n
where P(n) is True

Uniqueness

Often, statements have the form “there is a
unique x such that ...”

Some sources use a uniqueness quantifier to
express this:

3'n. P(n)

However, it's possible to encode uniqueness
using just the two quantifiers we've seen.

A'n. P(n) = dn. (P(n) A VM. (P(m) - m = n))

In CS103, do not use the 3! quantifier. Just use
3 and V.

Summary of First-Order Logic

* Predicates allow us to reason about
different properties of the same object.

 Functions allow us to transform objects
into one another.

 Quantifiers allow us to reason about
properties of some or all objects.

 There are many useful identities for
negating first-order ftormulae.

SAT Solving

P(x) v

Back to Propositional Logic...

-

Is This Formula Ever True?

pVv —p

Is This Formula Ever True?

pA—Dp

Is This Formula Ever True?

ros—->t)A(s—-t->1)A(t—>r—-s)AtA-S

Is This Formula Ever True?

(x, > (X, %)) VX, AX AN—X)V (X, = X))

Satistiability

« A propositional logic formula @ is called satisfiable if
there is some assignment to its variables that makes it
evaluate to true.

« An assignment of true and false to the variables of ¢
that makes it evaluate to true is called a satisfying
assignment.

« Similar terms:

« (¢ is tautological if every variable assignment is a satisfying
assignment.

« (@ is satisfiable if some variable assignment is a satisfying
assignment.

* (¢ is unsatisfiable if no variable assignment is a satisfying
assignment.

SAT

 The boolean satisfiability problem (SAT) is
the following:

Given a propositional logic
formula @, is ¢ satisfiable?

* Note: Goal is just to get a yes/no answer, not to
actually find a satisfying assignment.

» It's possible to extract a satisfying assignment if you
know one exists; you're asked to prove this in the
problem set.

« Extremely important problem both in theory
and in practice.

Applications of SAT

Saturn

Precise and Scalable Software Analysis

Overview

The Saturn project is exploring techniques for highly scalable and precise analysis
of software, with applications to both bug-finding and verification. Saturn is based
on three main ideas:

¢ Saturn is summary-based: the analysis of a function fis a summary of fs
behavior. At call sites for f, only fs summary is used.

e Saturn is also constraint-based: analysis is expressed as a system of
constraints describing how the state at one program point is related to the
state at adjacent program points. The primary constraint language used in
Saturn is boolean satisfiability, with each bit accessed by a procedure or
loop represented by a distinct boolean variable.

¢ Program analyses in Saturn are expressed in a logic programming language
with some extensions to support constraints and function summaries.

http://saturn.stanford.edu/

http://saturn.stanford.edu/

Saturn

Precise and Scalable Software Analysis

Overview

The Saturn project is exploring techniques for highly scalable and precise analysis
of software, with applications to both bug-finding and verification. Saturn is based
on three main ideas:

+ Saturn is summary-based: the analysis of a function f is a summary of fs
behavior. At call sites for f, only fs summary is used.

e Saturn is also constraint-based: analysis is expressed as a system of

state at adjacent program points. The primary constraint language used in
Saturn is boolean satisfiability, with each bit accessed by a procedure or

loop represented by a distinct boolean variable.

¢ Program analyses in Saturn are expressed in a logic programming language
with some extensions to support constraints and function summaries.

http://saturn.stanford.edu/

http://saturn.stanford.edu/

ok EEP R E

Announcement: 2011 General Game Playing Competition

Introduction

General game players are systems able to accept declarative descriptions of arbitrary games at runtime
and able to use such descriptions to play those games effectively. Unlike specialized game plavers,
such as Deep Blue, general game players cannot rely on algorithms designed in advance for specific
games. General game playing expertise must depend on intelligence on the part of the game player
and not just intelligence of the programmer of the game player. In order to perform well, general
game players must incorporate various Artificial Intelligence technologies, such as knowledge
representation, reasoning, learning, and rational decsion making; and these capabilities have to work
together in integrated fashion.

While general game playing is a topic with inherent interest, work in this area has practical value as
well. The underlying technology can be used in a variety of other application areas, such as business
process management, electronic commerce, and military operations.

http://games.stanford.edu

http://games.stanford.edu/

\/

Solving SAT: Take One

A Simple Algorithm

* Given a formula @, we can just build a
truth table for ¢ and check all of the
rOWS.

 If any of them evaluate to true, then @ is
satisfiable.

 If none of them evaluate to true, then @ is
unsatisfiable.

SO0 what might this look like?

The Truth Table Algorithm

pVvp

©

—

The Truth Table Algorithm

pVv ™p
=
T(T

©

—

The Truth Table Algorithm

pV p
FT
TIT F

©

—

The Truth Table Algorithm

pVvTp
F T T
T\ T T F

©

—

The Truth Table Algorithm

pVvTp
F T T
T\ T T F

©

—

The Truth Table Algorithm

— 4 M Mo
- N 4 Tm|o

The Truth Table Algorithm

— 4 M Mo
- N 4 Tm|o

TFF F T

FFT F T
F FF F

F
F

TFTF

T FF T T

FFT T T
FFF T
TFT T

F
F

p q ri(req)Ar ApA-q

F
F
F
F

-
-
-
-

F
T

F
F

T
T

F
T

F
T

F
F

T
T

F
T

TFF F T

FFET F T

F
F

FFF F

TFTF

T FF T T

FFET T T
FFF T
TET T

F
F

p q rir—qAr ApAn-q

F
F
F
F

-
-
-
-

F
T

F
F

T
T

F
T

F
T

F
F

T
T

F
T

A Large Problem

« Truth tables can get very big very
quickly!

« With n variables, there will be 2" rows.

 Many real-word SAT instances have
hundreds of thousands of variables; this
1s completely infeasible!

Clause-Based Algorithms

Simplitying Our Formulas

« Arbitrary formulas in propositional logic
can be complex.

e [.ots of different connectives.

» Arbitrary nesting of formulas.

* Can be difficult to see how they all
interrelate.

 Goal: Convert formulas into a simpler
format.

Literals and Clauses

» A literal in propositional logic is a
variable or its negation:
° X
° —|y
« But not x A y.

* A clause is a many-way OR (disjunction)
of literals.

e« X VYV 2
¢ X
« Butnotx v =(y Vv 2)

Conjunctive Normal Form

« A propositional logic formula ¢ is in
conjunctive normal form (CNF) if it is
the many-way AND (conjunction) of
clauses.

e XVYVZ)A(DXVY)AXVYVZV W)
* XV Z
e Butnotxv(yAz)Vv(XVy)

* Only legal operators are —, v, A.
 No nesting allowed.

The Structure of CNF

(X VY VZ)A(XVIIWYV Z)A(XV Yy V7zZ)

The Structure of CNF

(X VY VZ)A(XVIIWYV Z)A(XV Yy V7zZ)
~ e — ~

The Structure of CNF

(X VY VZ)A(XVIIWYV Z)A(XV Yy V7zZ)
~ e — ~

Each clause must have

af least one
True literal in it.

The Structure of CNF

(xvyv.)A(-'xv.v z)A(-'xvyv.)
~ e Sm— ~

The Structure of CNF

(xvyv.)A(-'xv.v z)A(-'xvyv.)
~ e Sm— ~

\A/
We should pick af least one
frue literal trom each clause

The Structure of CNF

(X v.v-'z)A(!v-'yv z)A(.vyv-'z)

The Structure of CNF

(X V vy v.)/\(!v-yv z)A(-'xvlv-'z)

The Structure of CNF

(X V vy v.)A(-'xv-'yv!)A(-'xv y v.)

The Structure of CNF

(X V vy v.)A(-'xv-'yv!)A(-'xv y v.)

The Structure of CNF

(X V vy v.)A(-'xv-'yv!)A(-'xv y v.)
\/
. subject To The constraint that

we never choose a literal
and ifs negation

Getting to CNF

 There are excellent algorithms for solving
SAT formulas in CNF.

« How do we convert an arbitrary

propositional logic formula into a formula in
CNF?

e Outline:

« Turn any formula into a “mezzanine” format
called NNFE.

e Convert NNF formulas into CNF formulas.
 Details at the end of these slides.

SAT for CNF Formulas:
A Simple Backtracking Algorithm

(avcvd)
(avcvd)

(avocvd)

(avocvd) 3

(7"bv—ocv d)

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

cvd)
c vd)

cvd)

(
(
(
(

cvd) 3

(7"bv—ocv d)

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

cvd) ~b

cvd)

(
(cvd)
(
(

cvd) 3

(7"bv—ocv d)

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

(cvd) -~ =b
(c vd)

(cvd)

(cvd) 3

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

(cvd) -~ =b
(c vd)

(cvd)

(cvd) 3

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

(cvd) -~ =b

(c vd)

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

i i

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

i i

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

i i

cvd) ~b

cvd)

(
(cvd)
(
(

cvd) 3

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

i i

(cvd)

(cvd) 3

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

i i

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Y

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Y

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Y

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Y

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Wi

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Wi

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Wi

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Wi

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

Wi

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

i i

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

— >
> d

> C
—
> d
—

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

.
> d
> C
—
> d
(cvd) -~ =b —
(c vd)
(cvd)
(cvd) 3

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

i i

cvd)

c vd)
cvd)

cvd)

cvd)

i i

cvd)

c vd)
cvd)

cvd)

cvd)

TIRLELR

TIRLELR

TIRLELR

(ravbvece)

(7"bv-cv d)
(7av b vc)

("favTbv c)

TIRLELR

(bvc)

(7"bv-cv d)
(b v-oc)
(bv c)

TIRLELR

(bvc)

(7"bv-cv d)
(b v-oc)
(bv c)

TIRLELR

(bVC) >

TIRLELR

(bV_'C) =D

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

— >
>
> C
—
>
- b ——»
—>
> d
> C
—>
> d
9 —
(_'C) =D

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

— >
>
> C
—
>
- b ——»
—>
> d
> C
—>
> d
9 —
> C
(_'C) =D

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

—
- d
> C
~E
- d
s ~~E
~E
- d
> C
~E
- d
5 ~~Em
> C

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

—
- d
> C
~E
- d
s ~~E
~E
- d
> C
~E
- d
5 ~~Em
> C

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

— >
>
> C
—
>
- b ——»
—>
> d
> C
—>
> d
9 —
ﬂ
> C
(_'C) =D

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

— >
>
> C
—
>
- b ——»
—>
> d
> C
—>
> d
9 —
ﬂ
> C
(_'C) =D

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

m—
- d
> C
-
- d
Jh -
-
> d
> C
-
> d
. -
-
> C

()
€ eve)

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

(bvc)

(7"bv-cv d)
(b v-oc)
(bv c)

@ O @
g 2 Y Y Y Y

TIRLELR

(7"bv-cv d)

(bv c)

@ O @
g 2 Y Y Y Y

TIRLELR

cvd)

(

>

cvd)

(

TIRLELR

>
C
>
>
C
>
-
C
-
C

(c) -

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

TIRLELR

>
C
>
>
C
>
-
C
-
C

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

>

i

>

i

>

cvd)

(

TIRLELR

(mcvd) -

TN

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

TIRLELR

TN

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

TIRLELR

@ @ O @
Y ﬁg 2 Y Y Y Y

d

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

i

>

i

TIRLELR

@ @ O @
Y ﬁg 2 Y Y Y Y

K

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

TIRLELR

@ @ O @
Y ﬁg 2 Y Y Y Y

K

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

TIRLELR

@ @ O @
Y ﬁg 2 Y Y Y Y

K

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Pr!n—ceﬁ-ersity

Backtracking SAT Solving

* If @ is an empty set of clauses, return true.
« All clauses are satisfied.

 If @ contains (), return false.
 Some clause is unsatisfiable.

e Otherwise:

e Choose some variable x.

- Return whether ¢__ is satisfiable or ¢_is
satisfiable, where ¢__1is ¢ with x set to false and ¢,
is ¢ with x set to true.

Analyzing Backtracking

« The backtracking solver works reasonably
well on most inputs.

 Low memory usage - just need to remember one
potential path along the tree.

« For formulas with many satisfying assignments,
typically finds one very quickly.

« But it has its weaknesses.

 Completely blind searching - might miss “obvious”
choices.

« In the worst-case, must explore the entire tree,
which has 2" leaves for n variables.

Adding Heuristics

* A heuristic is an approach to solving a
problem that may or may not work
correctly.

* Contrast with an algorithm, which has
definitive guarantees on its behavior.

 The simplicity of CNF makes it possible
to add heuristics to our backtracking
solver.

« What sorts of heuristics might we add?

Pure Literal Elimination

(mravbvc)Aa(avc)A(mavb)A(avbvd)Aa("bv~d)

Pure Literal Elimination

(ﬂavva)A(avI)A(ﬂaVﬂb)A(ﬂavbvd)A(ﬂbVﬂd)

Pure Literal Elimination

(ﬂavva)A(avI)A(ﬂaVﬂb)A(ﬂavbvd)A(ﬂbVﬂd)

The variable ¢ is

never wnegated here,
There 1s no reason
not To set it o frue.

Pure Literal Elimination

(~av-b)A(-avbvd)A(-bv-d)

The variable ¢ is

never wnegated here,
There 1s no reason
not To set it o frue.

Pure Literal Elimination

(~av-b)A(-avbvd)A(-bv-d)

Pure Literal Elimination

(.v-'b)/\(lvbvd)/\(-'bv-d)

Pure Literal Elimination

(.v-'b)/\(lvbvd)/\(-'bv-d)

The variable a is

always negafed here,
There I1s no reason

not To set it 1o

false,

Pure Literal Elimination

(~bv-d)

The variable a is

always negafed here,
There I1s no reason

not To set it 1o

false,

Pure Literal Elimination

(~bv-d)

Pure Literal Elimination

(BBv-d)

Pure Literal Elimination

(BBv-d)

The variable b is
always negafed here,
There I1s no reason

not To set it 1o

false,

Pure Literal Elimination

The variable b is
always negafed here,
There I1s no reason

not To set it 1o

false,

Pure Literal Elimination

Pure Literal Elimination

All clauses have been
satisfied, so fhe
formula is satistiable,

Pure Literal Elimination

» A literal is called pure if its negation
appears nowhere in the formula.

« Setting that literal to true will satisty
some number of clauses automatically
and simplify the formula.

 Many formulas can be satistied by
iteratively applying pure literal
elimination.

Unit Propagation

(mravbvc)Aa(avd)A(mav b)A("avbvd)Aa—d

Unit Propagation

(-avbvc)/\(avd)/\(-'av-b)/\(-'avbvd)/\.

Unit Propagation

(-avbvc)/\(avd)/\(-'av-b)/\(-'avbvd)/\.

-d is all by ifself, d
has To be talse for
this tormula fo be

True,

Unit Propagation

(mravbvec)A(a)A(mavb)A("avb

-d is all by ifself, d
has To be talse for
this tormula fo be

True.,

Unit Propagation

(mravbvec)A(a)A(mavb)A(Tavb

Unit Propagation

(mravbvec)A(@)A(mavb)A(Tavb

Unit Propagation

(Tavbvec)A(I JA(Tavb)A(Tavb)

a is all by ifselt, a
has To be true tor
this tormula To be

True,

Unit Propagation

bvc) A (-b)A(b

a is all by ifselt, a
has To be true tor
this tormula To be

True.,

Unit Propagation

bvc) A (-b)A(b

Unit Propagation

bvc) A (-b)A(b

Unit Propagation

bvc)A (b) A(I)

b is all by itself, b
has To be fTrue tor
this tormula To be

True.,

Unit Propagation

b is all by itself, b
has To be fTrue tor
this tormula To be

True.,

Unit Propagation

Unit Propagation

Unit Propagation

We are leftt with an
emply clause, The
tormula is
unsatistiable,

Unit Propagation

A unit clause is a clause containing just
one literal.

« For the formula to be true, that literal
must be set to true.

» This might expose other unit clauses.

DPLL

« The DPLL algorithm is a modification of
the simple backtracking search
algorithm.

 Named for Davis, Putnam, Logemann, and
Loveland, its inventors.

* Incorporates the two heuristics we just
Saw.

DPLL

Simplify ¢ with unit propagation.
Simplify @ with pure literal elimination.
If @ is empty, return true.

If ¢ contains (), return false.
Otherwise:

e Choose some variable x.

- Return whether ¢__ is satisfiable or ¢_is
satisfiable, where ¢__is ¢ with x set to false and
@, is ¢ with x set to true.

bV cVd

)
)
)
)

(av~d)
(bvcvd)
(7av b vc)
(bvcvad)

("avb)

bV cVd

)
)
)
)

(av~d)
(bvcvd)
(7av b vc)
(bvcvad)

("avb)

START

bV cVd

)
)
)
)

(av~d)
(bvcvd)
(7av b vc)
(bvcvad)

("avb)

START

-

Guess Ta

(av~d)
(avbyvec) (avcvd)

(bvcvd)

(7"bv-cv~d) (avabv-c)

(bvcvad)

("bv-cv d) - (avocvd)
r START

Guess Ta

(av~d)

(avbvec) (avcvd)
(bvcvd)

(7"bv-cv~d) (avabv-c)
(bvcvad)

("bv-cv d) (avocvd)

r START

Guess Ta

(~d)

(bvec) (cvd)
(bvcvd)

("bv-cv~d) (“bv-c)
(bvcvad)

("bv-cv d) (cvd)

r START

Guess Ta

(7d)

(bvec) (cvd)
(bvcvd)

("bv-cv~d) (“bv-c)
(bvcvad)

("bv-cv d) (cvd)

r START

Guess Ta

(7d)

(bvec) (cvd)
(bvcvd)

("bv-cv~d) (“bv-c)
(bvcvad)

("bv-cv d) (cvd)

r START

Guess Ta

Propagate ~d

(bvc) - (cvd)
(wbv-ovd)

(bvcvd)

(ovewwa) U
(cvd)

("bv-cv d)

r START

Guess Ta

Propagate ~d

(bvc)

(bvcvd)

("bv-cv d)

START

-

Guess Ta

Propagate ~d

cvd)

“bvC)

cvd)

(bvc)

(bv-c

(bvec

START

-

Guess Ta

Propagate ~d

c)
“bvC)
C)

(bvc)

(bv-c

(bvec

START

-

Guess Ta

Propagate ~d

c)
“bvC)
C)

(bvc)

(bv-c

(bvec

START

-

Guess Ta

Propagate ~d

Propagate c

c)
“bvC)
C)

(“bv-C)

(7bv-c) (C)

r START

Guess Ta

Propagate ~d

Propagate c

(bv-c

START

-

Guess Ta

Propagate ~d

Propagate c

“bvC)

C)

START

-

Guess Ta

Propagate ~d

Propagate c

START

-

Guess Ta

Propagate ~d

Propagate c

START

-

Guess Ta

Propagate ~d

Propagate c

(bvc)

(bv-c

(bvcvd)

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

c)
“bvC)
C)

(~d)

(bvec) (cvd)
(bvcvd)

("bv-cv~d) (“bv-c)
(bvcvad)

("bv-cv d) (cvd)

r START

Guess Ta

Propagate ~d

Propagate c
FAILURE

(av~d)

(avbvec)

(bvcvd)
("avTbv c)

(7av b vc)
(7"bv-cv~d)

(bvcvd)
("bv-cv d)

("avb)
r START
Guess Ma

Propagate ~d

Propagate c

FAILURE

(av~d)

(avbvec)
(bvcvd)

("avTbv c)
(7av b vc)

(7"bv-cv~d)
(bvcvad)

("bv-cv d)

("avb)
r START T
Guess Ma Forced: a

Propagate ~d

Propagate c

FAILURE

(mavbv c)

(bvcvd)

(7aVv b vc)

(7"bv-cv~d)

(bvcvad)

("bv-cv d)

(mavb)

START

-

Guess Ta

Propagate ~d

Propagate c

Il

(7av-bv-d)

Forced: a

(bvcvd)

(7av-bv c) (mav-bv~d)
(7av b vc)

(7"bv-cv~d)

(bvcvad)
("bv-cv d)
("avb)
r START T
Guess 7a Forced: a

Propagate ~d

Propagate c
FAILURE

(bvcvd)

(“bv C) (“bvd)
(b v-c)

(7"bv-cv~d)
(bvcvad)

("bv-cv d)

s

Guess Ta Forced: a

Propagate ~d

Propagate c
FAILURE

(bvcvd)

(“bv C) (“bvd)
(b v-c)

(7"bv-cv~d)
(bvcvad)

("bv-cv d)

s

Guess Ta Forced: a

Propagate ~d

Propagate c
FAILURE

(bvcvd)

(“bv C) (“bvd)
(b v-c)

(7"bv-cv~d)
(bvcvad)

("bv-cv d)

s

Guess Ta Forced: a

Propagate ~d Propagate —b

Propagate c
FAILURE

(bvcvd)

(
(bvcvd)

b v-oc)

START

-

Guess Ta

Propagate ~d

Propagate c

Il

Forced: a

Propagate —b

(bvcvd)

b v-c)

(bvcv-d)

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Il

Forced: a

Propagate —b

cvd)

_IC)

c vd)

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Il

Forced: a

Propagate —b

cvd)

—|0)

c vd)

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Il

Forced: a

Propagate —b

cvd)

—|0)

c vd)

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Il

Forced: a

Propagate —b

Propagate —c

(

(

cvd)

c vd)

START

-

Guess Ta

Propagate ~d

Propagate c

Il

Forced: a

Propagate —b

Propagate —c

cvd)

c vd)

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Il

Forced: a

Propagate —b

Propagate —c

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Forced: a

Propagate —b

Propagate —c

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Forced: a

Propagate —b

Propagate —c

Propagate d

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Forced: a

Propagate —b

Propagate —c

Propagate d

START

-

Guess Ta

Propagate ~d

Propagate c

Forced: a

Propagate —b

Propagate —c

Propagate d

START

-

Guess Ta

Propagate ~d

Propagate c

FAILURE

Il

Forced: a

Propagate —b

Propagate —c

Propagate d

s

Guess Ma Forced: a
Propagate ~d Propagate —b
Propagate c Propagate —c

FAILURE Propagate d

s

Guess Ma Forced: a
Propagate ~d Propagate —b
Propagate c Propagate —c

FAILURE Propagate d

START

-

Guess Ta

Propagate ~d

Propagate c

Il

Forced: a

Propagate —b

Propagate —c

Propagate d

DPLL is Powertful

« DPLL was invented 50 years and three

months ago, but is still the basis for most
SAT solvers.

 The two heuristics aggressively simplity
many common cases.

« However, still has an exponential worst-
case runtime.

How hard 1s SAT?

How hard 1s SAT?

We'll see more on this later on...

An Important
Milestone

Recap: Discrete Mathematics

 The past four weeks have focused exclusively on
discrete mathematics:

Induction Functions

Graphs The Pigeonhole Principle
Relations Logic

Set Theory Cardinality

 These are the building blocks we will use
throughout the rest of the quarter.

 These are the building blocks you will use
throughout the rest of your CS career.

Next Up: Computability Theory

 It's time to switch gears and address the limits of
what can be computed.

 We'll explore

What is the formal definition of a computer?

What might computers look like with various resource
constraints?

What problems can be solved by computers?

What problems can't be solved by computers?

 Get ready to explore the boundaries of what
computers could ever be made to do.

Next Time

 Formal Languages

« What is the mathematical definition of a
problem?

 Finite Automata

« What does a mathematical model of a
computer look like?

Appendix: Getting to CNF

Negation Normal Form

« A formula @ in propositional logic is in negation
normal form (NNF) iff

 The only connectives are —, v, and A.
 — is only applied directly to variables.
« Examples:
e (an(bv —=c))v(dn—a)
eaVbVv-c
 Non-Examples:
« =(a A b)
ca—-(—bvVvc
e m—a V b A —C

Getting to NNF

« NNF is a stepping stone toward CNF:
* Only have v, A, and —.
» All negations pushed onto variables.

e Build an algorithm to get from arbitrary
propositional logic down to NNF.

e Our conversion process will work as
follows:

« Eliminate complex connectives.
« Simplity negations.

Eliminating Complex Connectives

« NNF only allows A, v, —.

« First step: Replace other connectives with
these three.

 Replace ¢ = y with (=@ vV).

 Can also replace <, T, and L with formulas
just using A, v, and —; you'll do this in the
problem set. ©

 Result: A new formula that is logically
equivalent to the original and not much
bigger.

Eliminating Complex Connectives

“(pAgAT)> (S>> -tV Q)
= (PAgAT)V 2 (s—-tVvQ)
= (PAgAT)V (s vV -tV Q)

Simplitying Negations

« NNF only allows negations in front of variables.

« Now that we have just v, A, and —, repeatedly
apply these rules to achieve this result:

 Replace == with @
 Replace = (@ A W) with =@ Vv =y

 Replace = (¢ vV W) with = A =y

» This process eventually terminates; the “height”
of the negations keeps decreasing.

Simplitying Negations

= (pAQqQAT)V 2(msV tvVvQ)
(bAgAT)V (s V -tV Q)

(bAgAT)V (S A=t A Q)
(bAgAT)V(SAEA Q)

From NNF to CNF

« Now that we can get to NNEF let's get
down to CNFE.

 Recall: CNF is the conjunction of clauses:
(X, VX, VX)A(X V-X)A..

« We'll use an inductive approach to
convert NNF into CNF.

From NNF to CNF

 Every NNF formula is either

e A literal,
 The conjunction of two NNF formulas: @ A y
 The disjunction of two NNF formulas: ¢ v y

« Let's work through some examples and
see if we can find a pattern.

Examples: NNF to CNF

(XVYyVZV-W)A(XVy)

Examples: NNF to CNF

XV (yA2)
(X Vy AKXV 2)

F
F
F

-
-
-
-
-

F
F

-
-
-
-
-
-

Xy Z|XVyYANZ)XVYy AKXV Z)

F FF|FF F

F F T|FF F

F T F|FF F

FTT|FT T
TFFITT F
TFT|TT F
TTFITT F
TTTITT T

Examples: NNF to CNF

(WAX)V (YA 2)
(WAX)VY)AN((WAX)V 2)
WVYAKXVYAWVZ)AKXVZ)

Examples: NNF to CNF

(VAWAX)V (YAZ2)
(VAWAX)VY)A((VAWAX)AZ)
(VAWVY)AXVY) AN((VAW)VZ) AKXV 2)
WVVYAWVYAXVYANNVVZIIAWVZ)IA(YV 2

Converting NNF to CNF

« Apply the following reasoning inductively:

 If the formula is a literal, do nothing.

e If the formulais ¢ A y:
- Convert ¢ and y to CNEFE call it ¢' and y'.
- Yield @' A '

o If the formulais ¢ v y:

- Convert ¢ and y to CNE call it ¢' and y'.

- Repeatedly apply the distributive law
XV(iyAzZ)=EExXVYy)AEXEV2Z)toe' vy until
simplified.

A Problem

(anb)vicnd)vienf)v(gnh)

(@vec)Aan(@vd Abvec)a(bvd)
Y
(e nf) v(gAh)

(@vcve)A(avecvDhAa(avdve rn(@avdyvia
(bvcve)nbvcvDabvdve Ar((bvdvi)
Vv

(g ADh)

(avcvevg)A(avcvivg)an(avdvevg)a(avdvivag)
AN(bvcvevg)A(bvcvivg)an(bvdvevg)a(bvdvivag)
ANAflfavcvevh)aAn(avcvivh)aA(avdvevh)a(@vdvivh)

A(bvcvevhAbvecvivh)a(bvdvevh Aabvdvivh)

Exponential Blowup

* Our logic for eliminating v can lead to
exponential size increases.

 Not a problem with the algorithm; some
formulas produce exponentially large
CNF formulas.

 We will need to find another approach.

Equivalence and Equisatistiability

Recall: Two logical formulas ¢ and y are
are equivalent (denoted ¢ =) if they
always take on the same truth values.

Two logical formulas ¢ and y are
equisatisfiable (denoted @ =) if ¢ is
satisfiable iff y is satisfiable.

« Either ¢ and y are satisfiable, or ¢ and y are
unsatisfiable.

To solve SAT for a formula ¢, we can
instead solve SAT for an equisatisfiable .

Equisatistiably from NNF to CNF

(anbA—c)Vv(maAc)V(a ATb)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(anbA—C)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)Aa(bvg)a(Tcvq)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)Aa(bvg)a(Tcvq)

(7aAnc)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)Aa(bvg)a(Tcvq)

(favog)A(cvq)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)Aa(bvg)a(Tcvq)

(favog)A(cvq)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)A(bvg)a(-cvq)

(favog)A(cvq)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(Bva)a(Bva)a(feva)

A

(favog)A(cvq)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(Bva) (Bva)(feva)

A

(favog)A(cvq)

Equisatisfiably from NNF to CNF

-v(-aAc)v(a Ab)

(VR By~ (v
A
(-'av.)/\(cv.)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)A(bvg)a(-cvq)

(favog)A(cvq)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)A(bvg)a(-cvq)

A

(Rav-q)n(Bvaq)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)A(bvg)a(-cvq)

A

(Ravig) A (Bvha)

Equisatisfiably from NNF to CNF

-v(-aAc)v(a Ab)

(aVI)A(bVI)A(ﬂCVI)
N
(Ravid) A (v

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)A(bvg)a(-cvq)

(favog)A(cvq)

Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv(a A"b)

(avg)A(bvg)a(cvg)a(mavg)A(cVvq)

Equisatistiably from NNF to CNF

((avg)Aa(bvg)a(~cvg)a(—av~g)A(cvq))v(aAb)

(avg)A(bvg)Aa(cvg)Aa(mavrg)A(cv™q)

Equisatistiably from NNF to CNF

((avg)Aa(bvg)a(~cvg)a(—av~g)A(cvq))v(aAb)

Equisatisfiably from NNF to CNF

(Bv A VeI v g A vg) 10

Equisatisfiably from NNF to CNF

(Bv A VeI v g A vg) 10

Equisatisfiably from NNF to CNF

(Bv A VeI v g A vg) 10

((avq)A(bvg)a(meva)A(maveg)a(cvg)

Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)

Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)

a Ab

Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)

(a)a(b)

Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)

(anr)A(7bAr)

Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)
A

(anr)A(7bAr)

Equisatistiably from NNF to CNF

((avg)Aa(bvqg)a(—cvg)Aa(ravg)A(cvmq))Vv(aATb)

(avqvr)aA(bvqvr)a(,cvqvr)a(Tavgvr)A(cvqvr)
A

(anhr)A("bAT)

Equisatisfiably from NNF to CNF

((a¥a)a(bva)A(Teva)a(-avTa)A(sYa))y (o A 0)

(avlvr)/\(bvlvr)/\(-'cvlvr)/\(.v-'qu)/\(Iv-'qu)
A

(anhr)A(7bAT)

Equisatisfiably from NNF to CNF

BV A A A (oA e) 17

(avlvl>/\(bvlvl>/\(-'cvlvl>/\(.v-'qvl>/\(Iv-'qvl>
A

(anr)A(7bAr)

Equisatisfiably from NNF to CNF

BV A A A (oA e) 17

(avlvl>/\(bvlvl>/\(-'cvlvl>/\(.v-'qvl>/\(Iv-'qvl>
A
(a/\.)/\(-b/\.)

Equisatistiably from NNF to CNF

((avg)Aa(bvqg)a(—cvg)Aa(ravg)A(cvmq))Vv(aATb)

(avqvr)aA(bvqvr)a(,cvqvr)a(Tavgvr)A(cvqvr)
A

(anhr)A("bAT)

Equisatisfiably from NNF to CNF

((a¥a)a(bva)A(Teva)a(-avTa)A(sYa))y (o A 0)

(avqvr)aA(bvqvr)a(,cvqvr)a(Tavgvr)A(cvqvr)

A
(IA r)A(.A r)

Equisatisfiably from NNF to CNF

BV A A A (oA e) 17

(avqvr)aA(bvqvr)a(,cvqvr)a(Tavgvr)A(cvqvr)

A
i3 2 g

Equisatisfiably from NNF to CNF

BV A A A (oA e) 17

(aqul>/\(bqul>/\(-'cqul>/\(-'av-'qvl)/\(cv-'qvl>
A
(B) A (BB AT)

Equisatistiably from NNF to CNF

o If the formula is a literal, do nothing.

 If the formula is @ A y:
« Convert @ and y to CNE call it ¢' and y'.
. Yield @' A '

« If the formulais ¢ v y:

« Convert ¢ and y to CNF, call it @' and y'.
Create a new variable q.

Add g to each clause of @'.

Add —q to each clause of y'.

Yield @' A y'.

« Adds at most n new variables to each clause, where n is
the number of clauses. Size increase at worst quadratic.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321

