
  

Mathematical Logic
Part Three



  

Friday Four Square!
Today at 4:15PM, Outside Gates



  

Announcements

● Problem Set 3 due right now.
● Problem Set 4 goes out today.

● Checkpoint due Monday, October 22.
● Remainder due Friday, October 26.
● Play around with propositional and first-

order logic!



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about 

multiple objects simultaneously.



  

Quantifiers

● A statement of the form ∀x. ψ asserts that for 
every choice of x in our domain, ψ is true.

● A statement of the form ∃x. ψ asserts that for 
some choice of x in our domain, ψ is true.

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.



  

Translating into First-Order Logic

● First-order logic has great expressive 
power and is often used to formally 
encode mathematical definitions.

● Let's go provide rigorous definitions for 
the terms we've been using so far.



  

Set Theory

“The union of two sets is the set 
containing all elements of both sets.”

∀S. ∀T. (Set(S) ∧ Set(T) →
∀x. (x ∈ S ∪ T ↔ x ∈ S ∨ x ∈ T))
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Set Theory

“The union of two sets is the set 
containing all elements of both sets.”

∀S. ∀T. (Set(S) ∧ Set(T) →
∀x. (x ∈ S ∪ T ↔ x ∈ S ∨ x ∈ T))



  

Set Theory

“The intersection of two sets is the set 
containing all elements of both sets.”

∀S. ∀T. (Set(S) ∧ Set(T) →
∀x. (x ∈ S ∪ T ↔ x ∈ S ∧ x ∈ T))



  

Set Theory

“The intersection of two sets is the set 
containing all elements of both sets.”

∀S. ∀T. (Set(S) ∧ Set(T) →
∀x. (x ∈ S ∩ T ↔ x ∈ S ∧ x ∈ T))



  

Relations

“R is a reflexive relation over A.”



  

Relations

“R is a reflexive relation over A.”

∀a ∈ A. aRa



  

Relations

“R is a symmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb → bRa)



  

Relations

“R is an antisymmetric relation over A.”

∀a ∈ A. ∀b ∈ A. (aRb ∧ bRa → a = b)



  

Relations

“R is a transitive relation over A.”

∀a ∈ A. ∀b ∈ A. ∀c ∈ A. (aRb ∧ bRc → aRc)



  

Negating Quantifiers

● We spent much of last lecture discussing 
how to negate propositional constructs.

● How do we negate quantifiers?



  

An Extremely Important Table

∀x. P(x)

∃x. P(x)

When is this true? When is this false?

∀x. ¬P(x)

∃x. ¬P(x)
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Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Negating Quantifiers

● What is the negation of the following 
statement?

∀x. ∃y. (P(x) → Q(y))
● We can obtain it as follows:

¬∀x. ∃y. (P(x) → Q(y))

∃x.¬∃y. (P(x) → Q(y))

∃x.∀y. ¬(P(x) → Q(y))

∃x.∀y. (P(x) ∧ ¬Q(y))



  

Analyzing Relations

“R is a binary relation over set A that is not 
reflexive”

¬∀a ∈ A. aRa
∃a ∈ A. ¬aRa

“Some a ∈ A is not related to itself by R.”



  

Analyzing Relations

“R is a binary relation over A that is not 
antisymmetric”

¬∀x ∈ A. ∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ¬∀y ∈ A. (xRy ∧ yRx → x = y)
∃x ∈ A. ∃y ∈ A. ¬(xRy ∧ yRx → x = y)

∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ ¬(x = y))
∃x ∈ A. ∃y ∈ A. (xRy ∧ yRx ∧ x ≠ y)

“Some x ∈ A and y ∈ A are related to one 
another by R, but are not equal”



  

A Useful Equivalence

● The following equivalences are useful when 
negating statements in first-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q
● These identities are useful when negating 

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.



  

Negating Quantifiers

● What is the negation of the following 
statement?

∃x. ∀y. (P(x) ∧ Q(y))
● We can obtain it as follows:
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∀x. ∃y. (P(x) → ¬Q(y))



  

Using the predicates

   - Tourn(T), which states that T is a tournament,
   - p  ∈ T, which states that p is a player in tournament T, and
   - Beats(p

1
, p

2
), which states that p

1
 beat p

2
,

Write a sentence in first-order logic that means “Every tournament has 
a tournament winner.”



  

Every tournament has a tournament winner.

    ∀T. (Tourn(T) →
                (∃w ∈ T. 
                    (∀p ∈ T.
                         (p ≠ w → 
                             (Beats(w, p) ∨
                                 (∃p' ∈ T.
                                     (Beats(w, p') ∧ Beats(p', p))
                                 )
                              )
                          )
                     )
                 )
            )

There is some tournament graph where
    for each player w,
        there is some other player p who w didn't beat and
             for each player p'
                 if that w beat p', then p' did not beat p.



  

Every tournament has a tournament winner.
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                                 )
                              )
                          )
                     )
                 )
            )
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             for each player p'
                 if that w beat p', then p' did not beat p.



  

Every tournament has a tournament winner.
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Every tournament has a tournament winner.
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Uniqueness



  

Uniqueness

● Often, statements have the form “there is a 
unique x such that …”

● Some sources use a uniqueness quantifier to 
express this:

∃!n. P(n)
● However, it's possible to encode uniqueness 

using just the two quantifiers we've seen.

∃!n. P(n) ≡ ∃n. (P(n) ∧ ∀m. (P(m) → m = n))

In CS103, do not use the ∃! quantifier.  Just use 
∃ and ∀.There is some n 
where P(n) is true

There is some n 
where P(n) is true

And whenever P is 
true, it must be for n.

And whenever P is 
true, it must be for n.
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∃!n. P(n) ≡ ∃n. (P(n) ∧ ∀m. (P(m) → m = n))
● In CS103, do not use the ∃! quantifier.  Just use 

∃ and ∀.



  

Summary of First-Order Logic

● Predicates allow us to reason about 
different properties of the same object.

● Functions allow us to transform objects 
into one another.

● Quantifiers allow us to reason about 
properties of some or all objects.

● There are many useful identities for 
negating first-order formulae.



  

SAT Solving



  

Back to Propositional Logic...

∀

∃

P(x)



  

Is This Formula Ever True?

p ∨ ¬p



  

Is This Formula Ever True?

p ∧ ¬p



  

Is This Formula Ever True?

(r → s → t) ∧ (s → t → r) ∧ (t → r → s) ∧ t ∧ ¬s



  

Is This Formula Ever True?

(x0 → (x1 ↔ x0)) ∨ (x2 ∧ x1 ∧ ¬x0) ∨ (x1 → ¬x1)



  

Satisfiability

● A propositional logic formula φ is called satisfiable if 
there is some assignment to its variables that makes it 
evaluate to true.

● An assignment of true and false to the variables of φ 
that makes it evaluate to true is called a satisfying 
assignment.

● Similar terms:
● φ is tautological if every variable assignment is a satisfying 

assignment.
● φ is satisfiable if some variable assignment is a satisfying 

assignment.
● φ is unsatisfiable if no variable assignment is a satisfying 

assignment.



  

SAT

● The boolean satisfiability problem (SAT) is 
the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Note: Goal is just to get a yes/no answer, not to 
actually find a satisfying assignment.
● It's possible to extract a satisfying assignment if you 

know one exists; you're asked to prove this in the 
problem set.

● Extremely important problem both in theory 
and in practice.



  

Applications of SAT



  

http://saturn.stanford.edu/

http://saturn.stanford.edu/


  

http://saturn.stanford.edu/

http://saturn.stanford.edu/


  

http://games.stanford.edu

http://games.stanford.edu/


  



  

Solving SAT: Take One



  

A Simple Algorithm

● Given a formula φ, we can just build a 
truth table for φ and check all of the 
rows.

● If any of them evaluate to true, then φ is 
satisfiable.

● If none of them evaluate to true, then φ is 
unsatisfiable.

● So what might this look like?



  

The Truth Table Algorithm

p p  ¬p∨

F

T



  

The Truth Table Algorithm

p p  ¬p∨

F

T

F

T



  

The Truth Table Algorithm

p p  ¬p∨

F

T

F

T F

T



  

The Truth Table Algorithm

p p  ¬p∨

F

T

F

T F

TT

T



  

The Truth Table Algorithm

p p  ¬p∨

F

T

F

T F

TT

T



  

The Truth Table Algorithm

q      (p → q)  q∧

F

T

p

F

F

F

T

T

T

T

T

F

T

F

T

F

T

F

T

F

T



  

The Truth Table Algorithm

q      (p → q)  q∧

F

T

p

F

F

F

T

T

T

T

T

F

T

F

T

F

T

F

T

F

T



  

q (r ↔ q)  r   p  ¬q∧ ∧ ∧

F
T

p
F
F

F
T

T
T

F
T

F
F

F
T

T
T

F
F

T
T

F
F

T
T

r
T
F
F
T
T
F
F
T

F
T
F
T
F
T
F
T

F
F

T
T

F
F

T
T

T
T
F
F
T
T
F
F

F
F
F
F
F
F
F
F



  

q (r ↔ q)  r   p  ¬q∧ ∧ ∧

F
T

p
F
F

F
T

T
T

F
T

F
F

F
T

T
T

F
F

T
T

F
F

T
T

r
T
F
F
T
T
F
F
T

F
T
F
T
F
T
F
T

F
F

T
T

F
F

T
T

T
T
F
F
T
T
F
F

F
F
F
F
F
F
F
F



  

A Large Problem

● Truth tables can get very big very 
quickly!

● With n variables, there will be 2n rows.
● Many real-word SAT instances have 

hundreds of thousands of variables; this 
is completely infeasible!



  

Clause-Based Algorithms



  

Simplifying Our Formulas

● Arbitrary formulas in propositional logic 
can be complex.
● Lots of different connectives.
● Arbitrary nesting of formulas.

● Can be difficult to see how they all 
interrelate.

● Goal: Convert formulas into a simpler 
format.



  

Literals and Clauses
● A literal in propositional logic is a 

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction) 
of literals.
● ¬x ∨ y ∨ ¬z
● x
● But not x ∨ ¬(y ∨ z)



  

Conjunctive Normal Form

● A propositional logic formula φ is in 
conjunctive normal form (CNF) if it is 
the many-way AND (conjunction) of 
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● x ∨ z
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

Each clause must have 
at least one

true literal in it.



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

We should pick at least one
true literal from each clause



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )



  

The Structure of CNF

( x ∨ y ∨ ¬z ) ( ¬x ∨ ¬y ∨ z )∧ ∧ ( ¬x ∨ y ∨ ¬z )

… subject to the constraint that
we never choose a literal

and its negation



  

Getting to CNF

● There are excellent algorithms for solving 
SAT formulas in CNF.

● How do we convert an arbitrary 
propositional logic formula into a formula in 
CNF?

● Outline:
● Turn any formula into a “mezzanine” format 

called NNF.
● Convert NNF formulas into CNF formulas.
● Details at the end of these slides.



  

SAT for CNF Formulas:
A Simple Backtracking Algorithm



  

( ¬a∨ b ∨ c )

( a ∨ c ∨ d )

( a ∨ c ∨¬d )

( a ∨¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( a ∨¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University



  

( ¬a∨ b ∨ c )

( a ∨ c ∨ d )

( a ∨ c ∨¬d )

( a ∨¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( a ∨¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University



  

( ¬a∨ b ∨ c )

( c ∨ d )

( c ∨¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University



  

( ¬a∨ b ∨ c )

( c ∨ d )

( c ∨¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b



  

( ¬a∨ b ∨ c )

( c ∨ d )

( c ∨¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b



  

( ¬a∨ b ∨ c )

( c ∨ d )

( c ∨¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c



  

( ¬a∨ b ∨ c )

( c ∨ d )

( c ∨¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c



  

( ¬a∨ b ∨ c )

( d )

( ¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c



  

( ¬a∨ b ∨ c )

( d )

( ¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d



  

( ¬a∨ b ∨ c )

( d )

( ¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d



  

( ¬a∨ b ∨ c )

( )

( ¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d



  

( ¬a∨ b ∨ c )

( )

( ¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d



  

( ¬a∨ b ∨ c )

( )

( ¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d



  

( ¬a∨ b ∨ c )

( )

( ¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d



  

( ¬a∨ b ∨ c )

( )

( ¬d )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d



  

( ¬a∨ b ∨ c )

( )

( )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨



  

( ¬a∨ b ∨ c )

( )

( )

( ¬c∨ d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬c∨¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨



  

( ¬a∨ b ∨ c )

( )

( )

( d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨



  

( ¬a∨ b ∨ c )

( )

( )

( d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d



  

( ¬a∨ b ∨ c )

( )

( )

( d )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ¬d ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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c

d

d

¬d

c ∨

c ∨

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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c

d

d

¬d

c ∨

c ∨

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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c

d

d

¬d

c ∨

c ∨

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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c

d

d

¬d

c ∨

c ∨

d

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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c

d

d

¬d

c ∨

c ∨

d

d

¬d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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c

d

d

¬d

c ∨

c ∨

d

d

¬d

¬c∨

¬c∨



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬b∨¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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c

d

d

¬d

c ∨

c ∨

d

d

¬d

¬c∨

¬c∨



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d

d

¬d

¬c∨

¬c∨



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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d

d
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c ∨

c ∨

d

d

¬d

¬c∨

¬c∨

d

d

c

d



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University
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c

d

d

¬d

c ∨

c ∨

d

d

¬d

¬c∨

¬c∨

d

d

c

d

¬b∨



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d

d

¬d

¬c∨

¬c∨

d

d

c

d

¬b∨

a ∨

a ∨

a ∨

a ∨



  

( ¬a∨ b ∨ c )

( )

( )

( )

( ¬c∨ d )

( ¬a∨ b ∨¬c )

( ¬a∨¬b∨ c )

( ) a

Formula from “The Quest for Efficient Boolean Satisfiability Solvers” by Sharad Malik of Princeton University

b

c

d

d

¬d

c ∨

c ∨

d

d

¬d

¬c∨

¬c∨

d

d

c

d

¬b∨

a ∨

a ∨

a ∨

a ∨



  

( b ∨ c )

( )

( )
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Backtracking SAT Solving

● If φ is an empty set of clauses, return true.
● All clauses are satisfied.

● If φ contains ( ), return false.
● Some clause is unsatisfiable.

● Otherwise:
● Choose some variable x.

● Return whether φ¬x is satisfiable or φx is 
satisfiable, where φ¬x is φ with x set to false and φx 
is φ with x set to true.



  

Analyzing Backtracking

● The backtracking solver works reasonably 
well on most inputs.
● Low memory usage – just need to remember one 

potential path along the tree.
● For formulas with many satisfying assignments, 

typically finds one very quickly.

● But it has its weaknesses.
● Completely blind searching – might miss “obvious” 

choices.
● In the worst-case, must explore the entire tree, 

which has 2n leaves for n variables.



  

Adding Heuristics

● A heuristic is an approach to solving a 
problem that may or may not work 
correctly.
● Contrast with an algorithm, which has 

definitive guarantees on its behavior.

● The simplicity of CNF makes it possible 
to add heuristics to our backtracking 
solver.

● What sorts of heuristics might we add?



  

Pure Literal Elimination

( ¬a∨b∨c ) ( a∨c )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b∨d )∨∧∧ ( ¬b∨¬d )



  

Pure Literal Elimination

( ¬a∨b∨c ) ( a∨c )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b∨d )∨∨∧ ( ¬b∨¬d )∨∧



  

Pure Literal Elimination

( ¬a∨b∨c ) ( a∨c )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b∨d )∨∨∧ ( ¬b∨¬d )

The variable c is 
never negated here.  
There is no reason 

not to set it to true.

The variable c is 
never negated here.  
There is no reason 

not to set it to true.

∨∧



  

Pure Literal Elimination

( ¬a∨¬b ) ( ¬a∨b∨d )∨∨∧ ( ¬b∨¬d )

The variable c is 
never negated here.  
There is no reason 

not to set it to true.

The variable c is 
never negated here.  
There is no reason 

not to set it to true.

∨∧



  

Pure Literal Elimination

( ¬a∨¬b ) ( ¬a∨b∨d )∨∨∧ ( ¬b∨¬d )∨∧



  

Pure Literal Elimination

( ¬a∨¬b ) ( ¬a∨b∨d )∨∨∧ ( ¬b∨¬d )∨∧



  

Pure Literal Elimination

( ¬a∨¬b ) ( ¬a∨b∨d )∨∨∧ ( ¬b∨¬d )

The variable a is 
always negated here.  
There is no reason 
not to set it to 

false.

The variable a is 
always negated here.  
There is no reason 
not to set it to 

false.

∨∧



  

Pure Literal Elimination

( ¬b∨¬d )

The variable a is 
always negated here.  
There is no reason 
not to set it to 

false.

The variable a is 
always negated here.  
There is no reason 
not to set it to 

false.



  

Pure Literal Elimination

( ¬b∨¬d )



  

Pure Literal Elimination

( ¬b∨¬d )



  

Pure Literal Elimination

( ¬b∨¬d )

The variable b is 
always negated here.  
There is no reason 
not to set it to 

false.

The variable b is 
always negated here.  
There is no reason 
not to set it to 

false.



  

Pure Literal Elimination

The variable b is 
always negated here.  
There is no reason 
not to set it to 

false.

The variable b is 
always negated here.  
There is no reason 
not to set it to 

false.



  

Pure Literal Elimination



  

Pure Literal Elimination

All clauses have been 
satisfied, so the 

formula is satisfiable.

All clauses have been 
satisfied, so the 

formula is satisfiable.



  

Pure Literal Elimination

● A literal is called pure if its negation 
appears nowhere in the formula.

● Setting that literal to true will satisfy 
some number of clauses automatically 
and simplify the formula.

● Many formulas can be satisfied by 
iteratively applying pure literal 
elimination.



  

Unit Propagation

( ¬a∨b∨c ) ( a∨d )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b∨d )∨∧∧ ¬d



  

Unit Propagation

( ¬a∨b∨c ) ( a∨d )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b∨d )∨∨∧ ¬d∨∧



  

Unit Propagation

( ¬a∨b∨c ) ( a∨d )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b∨d )∨∨∧ ¬d

¬d is all by itself.  d 
has to be false for 
this formula to be 

true.

¬d is all by itself.  d 
has to be false for 
this formula to be 

true.

∨∧



  

Unit Propagation

( ¬a∨b∨c ) ( a )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b )∧

¬d is all by itself.  d 
has to be false for 
this formula to be 

true.

¬d is all by itself.  d 
has to be false for 
this formula to be 

true.



  

Unit Propagation

( ¬a∨b∨c ) ( a )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b )∧



  

Unit Propagation

( ¬a∨b∨c ) ( a )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b )∧



  

Unit Propagation

( ¬a∨b∨c ) ( a )∨ ∧ ( ¬a∨¬b )∨∧ ( ¬a∨b )∧

a is all by itself.  a 
has to be true for 
this formula to be 

true.

a is all by itself.  a 
has to be true for 
this formula to be 

true.



  

Unit Propagation

( b∨c )∨ ( ¬b )∨∧ ( b )∧

a is all by itself.  a 
has to be true for 
this formula to be 

true.

a is all by itself.  a 
has to be true for 
this formula to be 

true.



  

Unit Propagation

( b∨c )∨ ( ¬b )∨∧ ( b )∧



  

Unit Propagation

( b∨c )∨ ( ¬b )∨∧ ( b )∧



  

Unit Propagation

( b∨c )∨ ( ¬b )∨∧ ( b )∧

b is all by itself.  b 
has to be true for 
this formula to be 

true.

b is all by itself.  b 
has to be true for 
this formula to be 

true.



  

Unit Propagation

( )

b is all by itself.  b 
has to be true for 
this formula to be 

true.

b is all by itself.  b 
has to be true for 
this formula to be 

true.



  

Unit Propagation

( )



  

Unit Propagation

( )



  

Unit Propagation

( )

We are left with an 
empty clause.  The 

formula is 
unsatisfiable.

We are left with an 
empty clause.  The 

formula is 
unsatisfiable.



  

Unit Propagation

● A unit clause is a clause containing just 
one literal.

● For the formula to be true, that literal 
must be set to true.

● This might expose other unit clauses.



  

DPLL

● The DPLL algorithm is a modification of 
the simple backtracking search 
algorithm.
● Named for Davis, Putnam, Logemann, and 

Loveland, its inventors.

● Incorporates the two heuristics we just 
saw.



  

DPLL

● Simplify φ with unit propagation.
● Simplify φ with pure literal elimination.
● If φ is empty, return true.
● If φ contains ( ), return false.
● Otherwise:

● Choose some variable x.

● Return whether φ¬x is satisfiable or φx is 
satisfiable, where φ¬x is φ with x set to false and 
φx is φ with x set to true.



  

( a ∨ b ∨ c )

( ¬a∨¬b∨ c )

( a ∨¬b∨¬c )

( ¬b∨¬c∨ d )

( a ∨¬d )

( b ∨ c ∨ d )

( ¬a∨ b ∨¬c )

( a ∨ c ∨ d )

( ¬a∨¬b∨¬d )

( b ∨ c ∨¬d )

( ¬a∨¬b )

( ¬b∨¬c∨¬d )

( a ∨¬c∨ d )
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Guess ¬a
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Guess ¬a



  

( a ∨ b ∨ c )
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( a ∨ c ∨ d )
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Guess ¬a



  

( b ∨ c )

( ¬b∨¬c )

( ¬b∨¬c∨ d )

( ¬d )

( b ∨ c ∨ d )
( c ∨ d )

( b ∨ c ∨¬d )
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( ¬c∨ d )

START

Guess ¬a



  

( b ∨ c )
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( ¬b∨¬c∨¬d )

( ¬c∨ d )

START
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Propagate ¬d
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Propagate ¬d



  

( b ∨ c )

( ¬b∨¬c )
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START
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Propagate ¬d
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Propagate c

FAILURE
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DPLL is Powerful

● DPLL was invented 50 years and three 
months ago, but is still the basis for most 
SAT solvers.

● The two heuristics aggressively simplify 
many common cases.

● However, still has an exponential worst-
case runtime.



  

How hard is SAT?

We'll see more on this later on...



  

How hard is SAT?

We'll see more on this later on...



  



  

An Important 
Milestone



  

Recap: Discrete Mathematics

● The past four weeks have focused exclusively on 
discrete mathematics:

 Induction       Functions

 Graphs        The Pigeonhole Principle

 Relations       Logic

 Set Theory      Cardinality

● These are the building blocks we will use 
throughout the rest of the quarter.

● These are the building blocks you will use 
throughout the rest of your CS career.



  

Next Up: Computability Theory

● It's time to switch gears and address the limits of 
what can be computed.

● We'll explore
● What is the formal definition of a computer?
● What might computers look like with various resource 

constraints?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of what 
computers could ever be made to do.



  

Next Time

● Formal Languages
● What is the mathematical definition of a 

problem?

● Finite Automata
● What does a mathematical model of a 

computer look like?



  

Appendix: Getting to CNF



  

● A formula φ in propositional logic is in negation 
normal form (NNF) iff
● The only connectives are ¬, ∨, and ∧.
● ¬ is only applied directly to variables.

● Examples:
● (a ∧ (b ∨ ¬c)) ∨ (d ∧ ¬a)
● a ∨ b ∨ ¬c

● Non-Examples:
● ¬(a ∧ b)
● a → (¬b ∨ c)
● ¬¬a ∨ ¬b ∧ ¬c

Negation Normal Form



  

Getting to NNF

● NNF is a stepping stone toward CNF:
● Only have ∨, ∧, and ¬.
● All negations pushed onto variables.

● Build an algorithm to get from arbitrary 
propositional logic down to NNF.

● Our conversion process will work as 
follows:
● Eliminate complex connectives.
● Simplify negations.



  

Eliminating Complex Connectives

● NNF only allows ∧, ∨, ¬.
● First step: Replace other connectives with 

these three.
● Replace φ → ψ with (¬φ ∨ ψ).
● Can also replace ↔, ⊤, and ⊥ with formulas 

just using ∧, ∨, and ¬; you'll do this in the 
problem set. ☺

● Result: A new formula that is logically 
equivalent to the original and not much 
bigger.



  

Eliminating Complex Connectives

¬(p ∧ q ∧ r) → ¬(s → ¬t ∨ q)
¬¬(p ∧ q ∧ r) ∨ ¬(s → ¬t ∨ q)

¬¬(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)



  

Simplifying Negations

● NNF only allows negations in front of variables.
● Now that we have just ∨, ∧, and ¬, repeatedly 

apply these rules to achieve this result:
● Replace ¬¬φ with φ
● Replace ¬(φ ∧ ψ) with ¬φ ∨ ¬ψ
● Replace ¬(φ ∨ ψ) with ¬φ ∧ ¬ψ

● This process eventually terminates; the “height” 
of the negations keeps decreasing.



  

Simplifying Negations

¬¬(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)
(p ∧ q ∧ r) ∨ ¬(¬s ∨ ¬t ∨ q)

(p ∧ q ∧ r) ∨ (¬¬s ∧ ¬¬t ∧ ¬q)
(p ∧ q ∧ r) ∨ (s ∧ t ∧ ¬q)



  

From NNF to CNF

● Now that we can get to NNF, let's get 
down to CNF.

● Recall: CNF is the conjunction of clauses:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x4) ∧ … 

● We'll use an inductive approach to 
convert NNF into CNF.



  

From NNF to CNF

● Every NNF formula is either
● A literal,
● The conjunction of two NNF formulas: φ ∧ ψ
● The disjunction of two NNF formulas: φ ∨ ψ

● Let's work through some examples and 
see if we can find a pattern.



  

Examples: NNF to CNF

(x ∨ y ∨ z ∨ ¬w) ∧ (¬x ∨ ¬y)



  

Examples: NNF to CNF

x ∨ (y ∧ z)
(x ∨ y) ∧ (x ∨ z)
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Examples: NNF to CNF

(w ∧ x) ∨ (y ∧ z)
((w ∧ x) ∨ y) ∧ ((w ∧ x) ∨ z)

(w ∨ y) ∧ (x ∨ y) ∧ (w ∨ z) ∧ (x ∨ z)



  

Examples: NNF to CNF

(v ∧ w ∧ x) ∨ (y ∧ z)
((v ∧ w ∧ x) ∨ y) ∧ ((v ∧ w ∧ x) ∧ z)

((v ∧ w) ∨ y) ∧ (x ∨ y)  ∧ ((v ∧ w) ∨ z) ∧ (x ∨ z)
(v ∨ y) ∧ (w ∨ y) ∧ (x ∨ y) ∧ (v ∨ z) ∧ (w ∨ z) ∧ (y ∨ z)



  

Converting NNF to CNF

● Apply the following reasoning inductively:
● If the formula is a literal, do nothing.
● If the formula is φ ∧ ψ:

– Convert φ and ψ to CNF, call it φ' and ψ'.
– Yield φ' ∧ ψ'

● If the formula is φ ∨ ψ:
– Convert φ and ψ to CNF, call it φ' and ψ'.
– Repeatedly apply the distributive law

x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z) to φ' ∨ ψ' until 
simplified.



  

A Problem

(a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f) ∨ (g ∧ h)

((a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d))
∨

(e ∧ f) ∨ (g ∧ h)

((a ∨ c ∨ e) ∧ (a ∨ c ∨ f) ∧ (a ∨ d ∨ e) ∧ (a ∨ d ∨ f) ∧)
((b ∨ c ∨ e) ∧ (b ∨ c ∨ f) ∧ (b ∨ d ∨ e) ∧ (b ∨ d ∨ f)) ∧

∨
(g ∧ h)

(a ∨ c ∨ e ∨ g) ∧ (a ∨ c ∨ f ∨ g) ∧ (a ∨ d ∨ e ∨ g) ∧ (a ∨ d ∨ f ∨ g)
∧ (b ∨ c ∨ e ∨ g) ∧ (b ∨ c ∨ f ∨ g) ∧ (b ∨ d ∨ e ∨ g) ∧ (b ∨ d ∨ f ∨ g)
∧ (a ∨ c ∨ e ∨ h) ∧ (a ∨ c ∨ f ∨ h) ∧ (a ∨ d ∨ e ∨ h) ∧ (a ∨ d ∨ f ∨ h)

∧ (b ∨ c ∨ e ∨ h) ∧ (b ∨ c ∨ f ∨ h) ∧ (b ∨ d ∨ e ∨ h) ∧ (b ∨ d ∨ f ∨ h) ∧



  

Exponential Blowup

● Our logic for eliminating ∨ can lead to 
exponential size increases.

● Not a problem with the algorithm; some 
formulas produce exponentially large 
CNF formulas.

● We will need to find another approach.



  

Equivalence and Equisatisfiability

● Recall: Two logical formulas φ and ψ are 
are equivalent (denoted φ ≡ ψ) if they 
always take on the same truth values.

● Two logical formulas φ and ψ are 
equisatisfiable (denoted φ  ψ≅ ) if φ is 
satisfiable iff ψ is satisfiable.
● Either φ and ψ are satisfiable, or φ and ψ are 

unsatisfiable.
● To solve SAT for a formula φ, we can 

instead solve SAT for an equisatisfiable ψ.



  

Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )∨∨
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Equisatisfiably from NNF to CNF
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Equisatisfiably from NNF to CNF
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Equisatisfiably from NNF to CNF
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Equisatisfiably from NNF to CNF
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Equisatisfiably from NNF to CNF
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Equisatisfiably from NNF to CNF
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Equisatisfiably from NNF to CNF

( a∧b∧¬c ) ( ¬a∧c )∨ ∨ ( a ∧¬b )

(

∨∨

)∧ ( )∧ ( ))a b ¬cq∨ q∨q∨

( ¬a )∧ ( c )∨ ∨¬q ¬q

∧



  

Equisatisfiably from NNF to CNF
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Equisatisfiably from NNF to CNF

● If the formula is a literal, do nothing.
● If the formula is φ ∧ ψ:

● Convert φ and ψ to CNF, call it φ' and ψ'.
● Yield φ' ∧ ψ'

● If the formula is φ ∨ ψ:
● Convert φ and ψ to CNF, call it φ' and ψ'.
● Create a new variable q.
● Add q to each clause of φ'.
● Add ¬q to each clause of ψ'.
● Yield φ' ∧ ψ'.

● Adds at most n new variables to each clause, where n is 
the number of clauses.  Size increase at worst quadratic.
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