Mathematical Logic
Part Three



Friday Four Square!
Today at 4:15PM, Outside Gates



Announcements

 Problem Set 3 due right now.

 Problem Set 4 goes out today.

 Checkpoint due Monday, October 22.
« Remainder due Friday, October 26.

« Play around with propositional and first-
order logic!



What is First-Order Logic?

» First-order logic is a logical system for
reasoning about properties of objects.

 Augments the logical connectives from
propositional logic with

« predicates that describe properties of
objects, and

« functions that map objects to one another,

« quantifiers that allow us to reason about
multiple objects simultaneously.



Quantifiers

« A statement of the form Vx. yy asserts that for
every choice of x in our domain, y is true.

« A statement of the form Ix. Wy asserts that for
some choice of x in our domain, vy is true.

* The syntax
VX €S. @
dx € S. @
is allowed for quantifying over sets.



Translating into First-Order Logic

» First-order logic has great expressive
power and is often used to formally
encode mathematical definitions.

e Let's go provide rigorous definitions for
the terms we've been using so far.



Set Theory

“The union of two sets is the set
containing all elements of both sets.”
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Set Theory

“The intersection of two sets is the set
containing all elements of both sets.”



Set Theory

“The intersection of two sets is the set
containing all elements of both sets.”

VS. VT. (Set(S) A Set(T) -
Vx. x€ESNTox€ES AXxET))



Relations

“R is a reflexive relation over A.”



Relations

“R is a reflexive relation over A.”

VYa € A. aRa



Relations

“R is a symmetric relation over A.”

Va € A.Vb € A. (aRb — bRa)



Relations

“R is an antisymmetric relation over A.”

VaeA. Vb eA. (aRb A bRa—- a=>b)



Relations

“R is a transitive relation over A.”

VaeA.Vb € A.Vc € A. (aRb A bRc — aRc)



Negating Quantifiers

 We spent much of last lecture discussing
how to negate propositional constructs.

« How do we negate quantifiers?



An Extremely Important Table

When is this true? When is this false?

VX. P(x)
4x. P(x)
VX. 7P(X)
Ix. 7P(x)
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An Extremely Important Table
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Negating First-Order Statements

« Use the equivalences
VX, @ = AXx. 7@
—dx. @ = VX, 7@
to negate quantifiers.
 Mechanically:

 Push the negation across the quantifier.
 Change the quantifier from V to d or vice-versa.

« Use techniques from propositional logic to
negate connectives.



Negating Quantifiers

 What is the negation of the following
statement?

Vx. dy. (P(x) = Q()))
« We can obtain it as follows:

—Vx. dy. (P(x) = Q(y))
Ax.—3y. (P(x) = Q1))
Ax.Vy. =(P(x) = Q(y))
Ix.Vy. (P(x) A =Q(y))



Analyzing Relations

“R is a binary relation over set A that is not
reflexive”

-Va € A. aRa
da € A. ~aRa

“Some a € A is not related to itself by R.”



Analyzing Relations

“R is a binary relation over A that is not
antisymmetric”

—Vx € A.Vy € A. xRy AN yRx - x =y)
Ix € A. =Vy € A. (XRy A yRx » X = y)
Ix € A.dy € A. = (xRy A yRx =» x = y)
Ix € A.dy € A. xRy A yRx A =(x = V))
Ix € A.dy € A. xRy A yRX AN X # )

“Some x € A and y € A are related to one
another by R, but are not equal”



A Usetul Equivalence

« The following equivalences are useful when
negating statements in first-order logic:

-(pAQ) =p- q
(P~ q) =p A q

 These identities are useful when negating
statements involving quantifiers.

* A is used in existentially-quantified statements.
e — is used in universally-quantified statements.



Negating Quantifiers

 What is the negation of the following
statement?

Ix. Vy. (P(x) A Q(y))
 We can obtain it as follows:

—3x. Vy. (P(x) A Q(V))
Vx.=Vy. (P(x) A Q@)
Vx. 3y. = (P(x) A Q(y))
Vx. dy. (P(x) = =Q(y))



Using the predicates

- Tourn(T), which states that T is a tournament,
- p € T, which states that p is a player in tournament T, and
- Beats(p_, p,), which states that p, beat p,,

Write a sentence in first-order logic that means “Every tournament has
a tournament winner.”



Every tournament has a tournament winner.

VT. (Tourn(T) -
(Aw € T.
(Vp € T.
(p#w-
(Beats(w, p) Vv
(dp' € T.
(Beats(w, p') A Beats(p', p))
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Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p #wWA
(—Beats(w, p) A
(Vp' € T.
(Beats(w, p') =» —~Beats(p', p))
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Every tournament has a tournament winner.

AT. (Tourn(T) A
(Vw € T.
(dp € T.
(p #wWA
(—Beats(w, p) A
(Vp' € T.
(Beats(w, p') =» —~Beats(p', p))

There is some tournament where
for each player w,
there is some other player p who w didn't beat and
for each player p'
if w beat p', then p' did not beat p.



Uniqueness



Uniqueness

« Often, statements have the form “there is a
unique x such that ...”

e Some sources use a uniqueness quantifier to
express this:

3'n. P(n)

« However, it's possible to encode uniqueness
using just the two quantifiers we've seen.

d'n. P(n) = dn. (P(n) A VM. (P(m) - m = n))

/‘

And whenever P is
frue, it must be tor n.

There 1s some n
where P(n) is True




Uniqueness

Often, statements have the form “there is a
unique x such that ...”

Some sources use a uniqueness quantifier to
express this:

3'n. P(n)

However, it's possible to encode uniqueness
using just the two quantifiers we've seen.

A'n. P(n) = dn. (P(n) A VM. (P(m) - m = n))

In CS103, do not use the 3! quantifier. Just use
3 and V.



Summary of First-Order Logic

* Predicates allow us to reason about
different properties of the same object.

 Functions allow us to transform objects
into one another.

 Quantifiers allow us to reason about
properties of some or all objects.

 There are many useful identities for
negating first-order ftormulae.



SAT Solving



P(x) v

Back to Propositional Logic...

-



Is This Formula Ever True?

pVv —p



Is This Formula Ever True?

pA—Dp



Is This Formula Ever True?

ros—->t)A(s—-t->1)A(t—>r—-s)AtA-S



Is This Formula Ever True?

(x, > (X, %)) VX, AX AN—X)V (X, = X))



Satistiability

« A propositional logic formula @ is called satisfiable if
there is some assignment to its variables that makes it
evaluate to true.

« An assignment of true and false to the variables of ¢
that makes it evaluate to true is called a satisfying
assignment.

« Similar terms:

« (¢ is tautological if every variable assignment is a satisfying
assignment.

« (@ is satisfiable if some variable assignment is a satisfying
assignment.

* (¢ is unsatisfiable if no variable assignment is a satisfying
assignment.



SAT

 The boolean satisfiability problem (SAT) is
the following:

Given a propositional logic
formula @, is ¢ satisfiable?

* Note: Goal is just to get a yes/no answer, not to
actually find a satisfying assignment.

» It's possible to extract a satisfying assignment if you
know one exists; you're asked to prove this in the
problem set.

« Extremely important problem both in theory
and in practice.



Applications of SAT



Saturn

Precise and Scalable Software Analysis

Overview

The Saturn project is exploring techniques for highly scalable and precise analysis
of software, with applications to both bug-finding and verification. Saturn is based
on three main ideas:

¢ Saturn is summary-based: the analysis of a function fis a summary of fs
behavior. At call sites for f, only fs summary is used.

e Saturn is also constraint-based: analysis is expressed as a system of
constraints describing how the state at one program point is related to the
state at adjacent program points. The primary constraint language used in
Saturn is boolean satisfiability, with each bit accessed by a procedure or
loop represented by a distinct boolean variable.

¢ Program analyses in Saturn are expressed in a logic programming language
with some extensions to support constraints and function summaries.

http://saturn.stanford.edu/
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Announcement: 2011 General Game Playing Competition

Introduction

General game players are systems able to accept declarative descriptions of arbitrary games at runtime
and able to use such descriptions to play those games effectively. Unlike specialized game plavers,
such as Deep Blue, general game players cannot rely on algorithms designed in advance for specific
games. General game playing expertise must depend on intelligence on the part of the game player
and not just intelligence of the programmer of the game player. In order to perform well, general
game players must incorporate various Artificial Intelligence technologies, such as knowledge
representation, reasoning, learning, and rational decsion making; and these capabilities have to work
together in integrated fashion.

While general game playing is a topic with inherent interest, work in this area has practical value as
well. The underlying technology can be used in a variety of other application areas, such as business
process management, electronic commerce, and military operations.

http://games.stanford.edu
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Solving SAT: Take One



A Simple Algorithm

* Given a formula @, we can just build a
truth table for ¢ and check all of the
rOWS.

 If any of them evaluate to true, then @ is
satisfiable.

 If none of them evaluate to true, then @ is
unsatisfiable.

SO0 what might this look like?



The Truth Table Algorithm
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A Large Problem

« Truth tables can get very big very
quickly!

« With n variables, there will be 2" rows.

 Many real-word SAT instances have
hundreds of thousands of variables; this
1s completely infeasible!



Clause-Based Algorithms



Simplitying Our Formulas

« Arbitrary formulas in propositional logic
can be complex.

e [.ots of different connectives.

» Arbitrary nesting of formulas.

* Can be difficult to see how they all
interrelate.

 Goal: Convert formulas into a simpler
format.



Literals and Clauses

» A literal in propositional logic is a
variable or its negation:
° X
° —|y
« But not x A y.

* A clause is a many-way OR (disjunction)
of literals.

e« X VYV 2
¢ X
« Butnotx v =(y Vv 2)



Conjunctive Normal Form

« A propositional logic formula ¢ is in
conjunctive normal form (CNF) if it is
the many-way AND (conjunction) of
clauses.

e XVYVZ)A(DXVY)AXVYVZV W)
* XV Z
e Butnotxv(yAz)Vv(XVy)

* Only legal operators are —, v, A.
 No nesting allowed.



The Structure of CNF

(X VY VZ)A(XVIIWYV Z)A(XV Yy V7zZ)



The Structure of CNF

(X VY VZ)A(XVIIWYV Z)A(XV Yy V7zZ)
~ e — ~




The Structure of CNF

(X VY VZ)A(XVIIWYV Z)A(XV Yy V7zZ)
~ e — ~

Each clause must have

af least one
True literal in it.




The Structure of CNF

(xvyv.)A(-'xv.v z)A(-'xvyv.)
~ e Sm— ~




The Structure of CNF

(xvyv.)A(-'xv.v z)A(-'xvyv.)
~ e Sm— ~

\A/
We should pick af least one
frue literal trom each clause




The Structure of CNF

(X v.v-'z)A(!v-'yv z)A(.vyv-'z)




The Structure of CNF

(X V vy v.)/\(!v-yv z)A(-'xvlv-'z)




The Structure of CNF

(X V vy v.)A(-'xv-'yv!)A(-'xv y v.)




The Structure of CNF

(X V vy v.)A(-'xv-'yv!)A(-'xv y v.)




The Structure of CNF

(X V vy v.)A(-'xv-'yv!)A(-'xv y v.)
\/
. subject To The constraint that

we never choose a literal
and ifs negation




Getting to CNF

 There are excellent algorithms for solving
SAT formulas in CNF.

« How do we convert an arbitrary

propositional logic formula into a formula in
CNF?

e Outline:

« Turn any formula into a “mezzanine” format
called NNFE.

e Convert NNF formulas into CNF formulas.
 Details at the end of these slides.



SAT for CNF Formulas:
A Simple Backtracking Algorithm
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Backtracking SAT Solving

* If @ is an empty set of clauses, return true.
« All clauses are satisfied.

 If @ contains (), return false.
 Some clause is unsatisfiable.

e Otherwise:

e Choose some variable x.

- Return whether ¢__ is satisfiable or ¢_is
satisfiable, where ¢__1is ¢ with x set to false and ¢,
is ¢ with x set to true.



Analyzing Backtracking

« The backtracking solver works reasonably
well on most inputs.

 Low memory usage - just need to remember one
potential path along the tree.

« For formulas with many satisfying assignments,
typically finds one very quickly.

« But it has its weaknesses.

 Completely blind searching - might miss “obvious”
choices.

« In the worst-case, must explore the entire tree,
which has 2" leaves for n variables.



Adding Heuristics

* A heuristic is an approach to solving a
problem that may or may not work
correctly.

* Contrast with an algorithm, which has
definitive guarantees on its behavior.

 The simplicity of CNF makes it possible
to add heuristics to our backtracking
solver.

« What sorts of heuristics might we add?



Pure Literal Elimination

(mravbvc)Aa(avc)A(mavb)A(avbvd)Aa("bv~d)



Pure Literal Elimination
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Pure Literal Elimination

(ﬂavva)A(avI)A(ﬂaVﬂb)A(ﬂavbvd)A(ﬂbVﬂd)

The variable ¢ is

never wnegated here,
There 1s no reason
not To set it o frue.




Pure Literal Elimination

(~av-b)A(-avbvd)A(-bv-d)

The variable ¢ is

never wnegated here,
There 1s no reason
not To set it o frue.




Pure Literal Elimination

(~av-b)A(-avbvd)A(-bv-d)
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Pure Literal Elimination

(.v-'b)/\(lvbvd)/\(-'bv-d)

The variable a is

always negafed here,
There I1s no reason

not To set it 1o

false,




Pure Literal Elimination

(~bv-d)

The variable a is

always negafed here,
There I1s no reason

not To set it 1o

false,




Pure Literal Elimination

(~bv-d)



Pure Literal Elimination

(BBv-d)



Pure Literal Elimination

(BBv-d)

The variable b is
always negafed here,
There I1s no reason

not To set it 1o

false,




Pure Literal Elimination

The variable b is
always negafed here,
There I1s no reason

not To set it 1o

false,




Pure Literal Elimination



Pure Literal Elimination

All clauses have been
satisfied, so fhe
formula is satistiable,




Pure Literal Elimination

» A literal is called pure if its negation
appears nowhere in the formula.

« Setting that literal to true will satisty
some number of clauses automatically
and simplify the formula.

 Many formulas can be satistied by
iteratively applying pure literal
elimination.



Unit Propagation
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Unit Propagation

(-avbvc)/\(avd)/\(-'av-b)/\(-'avbvd)/\.



Unit Propagation

(-avbvc)/\(avd)/\(-'av-b)/\(-'avbvd)/\.

-d is all by ifself, d
has To be talse for
this tormula fo be

True,




Unit Propagation

(mravbvec)A( a )A(mavb)A("avb

-d is all by ifself, d
has To be talse for
this tormula fo be

True.,
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Unit Propagation

(mravbvec)A( @ )A(mavb)A(Tavb



Unit Propagation

(Tavbvec)A( I JA(Tavb)A(Tavb )

a is all by ifselt, a
has To be true tor
this tormula To be

True,




Unit Propagation

bvc) A ( -b)A( b

a is all by ifselt, a
has To be true tor
this tormula To be

True.,
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Unit Propagation

bvc)A ( b ) A( I )

b is all by itself, b
has To be fTrue tor
this tormula To be

True.,




Unit Propagation

b is all by itself, b
has To be fTrue tor
this tormula To be

True.,




Unit Propagation



Unit Propagation




Unit Propagation

We are leftt with an
emply clause, The
tormula is
unsatistiable,




Unit Propagation

A unit clause is a clause containing just
one literal.

« For the formula to be true, that literal
must be set to true.

» This might expose other unit clauses.



DPLL

« The DPLL algorithm is a modification of
the simple backtracking search
algorithm.

 Named for Davis, Putnam, Logemann, and
Loveland, its inventors.

* Incorporates the two heuristics we just
Saw.



DPLL

Simplify ¢ with unit propagation.
Simplify @ with pure literal elimination.
If @ is empty, return true.

If ¢ contains ( ), return false.
Otherwise:

e Choose some variable x.

- Return whether ¢__ is satisfiable or ¢_is
satisfiable, where ¢__is ¢ with x set to false and
@, is ¢ with x set to true.
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DPLL is Powertful

« DPLL was invented 50 years and three

months ago, but is still the basis for most
SAT solvers.

 The two heuristics aggressively simplity
many common cases.

« However, still has an exponential worst-
case runtime.



How hard 1s SAT?



How hard 1s SAT?

We'll see more on this later on...






An Important
Milestone




Recap: Discrete Mathematics

 The past four weeks have focused exclusively on
discrete mathematics:

Induction Functions

Graphs The Pigeonhole Principle
Relations Logic

Set Theory Cardinality

 These are the building blocks we will use
throughout the rest of the quarter.

 These are the building blocks you will use
throughout the rest of your CS career.



Next Up: Computability Theory

 It's time to switch gears and address the limits of
what can be computed.

 We'll explore

What is the formal definition of a computer?

What might computers look like with various resource
constraints?

What problems can be solved by computers?

What problems can't be solved by computers?

 Get ready to explore the boundaries of what
computers could ever be made to do.



Next Time

 Formal Languages

« What is the mathematical definition of a
problem?

 Finite Automata

« What does a mathematical model of a
computer look like?



Appendix: Getting to CNF



Negation Normal Form

« A formula @ in propositional logic is in negation
normal form (NNF) iff

 The only connectives are —, v, and A.
 — is only applied directly to variables.
« Examples:
e (an(bv —=c))v(dn—a)
eaVbVv-c
 Non-Examples:
« =(a A b)
ca—-(—bvVvc
e m—a V b A —C



Getting to NNF

« NNF is a stepping stone toward CNF:
* Only have v, A, and —.
» All negations pushed onto variables.

e Build an algorithm to get from arbitrary
propositional logic down to NNF.

e Our conversion process will work as
follows:

« Eliminate complex connectives.
« Simplity negations.



Eliminating Complex Connectives

« NNF only allows A, v, —.

« First step: Replace other connectives with
these three.

 Replace ¢ = y with (=@ vV ).

 Can also replace <, T, and L with formulas
just using A, v, and —; you'll do this in the
problem set. ©

 Result: A new formula that is logically
equivalent to the original and not much
bigger.



Eliminating Complex Connectives

“(pAgAT)> (S>> -tV Q)
= (PAgAT)V 2 (s—-tVvQ)
= (PAgAT)V (s vV -tV Q)



Simplitying Negations

« NNF only allows negations in front of variables.

« Now that we have just v, A, and —, repeatedly
apply these rules to achieve this result:

 Replace == with @
 Replace = (@ A W) with =@ Vv =y

 Replace = (¢ vV W) with = A =y

» This process eventually terminates; the “height”
of the negations keeps decreasing.



Simplitying Negations

= (pAQqQAT)V 2(msV tvVvQ)
(bAgAT)V (s V -tV Q)

(bAgAT)V (S A=t A Q)
(bAgAT)V(SAEA Q)



From NNF to CNF

« Now that we can get to NNEF let's get
down to CNFE.

 Recall: CNF is the conjunction of clauses:
(X, VX, VX)A(X V-X)A..

« We'll use an inductive approach to
convert NNF into CNF.



From NNF to CNF

 Every NNF formula is either

e A literal,
 The conjunction of two NNF formulas: @ A y
 The disjunction of two NNF formulas: ¢ v y

« Let's work through some examples and
see if we can find a pattern.



Examples: NNF to CNF

(XVYyVZV-W)A(XVy)



Examples: NNF to CNF

XV (yA2)
(X Vy AKXV 2)



F
F
F

-
-
-
-
-

F
F

-
-
-
-
-
-

Xy Z|XVyYANZ)XVYy AKXV Z)

F FF|FF F

F F T|FF F

F T F|FF F

FTT|FT T
TFFITT F
TFT|TT F
TTFITT F
TTTITT T



Examples: NNF to CNF

(WAX)V (YA 2)
(WAX)VY)AN((WAX)V 2)
WVYAKXVYAWVZ)AKXVZ)



Examples: NNF to CNF

(VAWAX)V (YAZ2)
(VAWAX)VY)A((VAWAX)AZ)
(VAWVY)AXVY) AN((VAW)VZ) AKXV 2)
WVVYAWVYAXVYANNVVZIIAWVZ)IA(YV 2



Converting NNF to CNF

« Apply the following reasoning inductively:

 If the formula is a literal, do nothing.

e If the formulais ¢ A y:
- Convert ¢ and y to CNEFE call it ¢' and y'.
- Yield @' A '

o If the formulais ¢ v y:

- Convert ¢ and y to CNE call it ¢' and y'.

- Repeatedly apply the distributive law
XV(iyAzZ)=EExXVYy)AEXEV2Z)toe' vy until
simplified.



A Problem

(anb)vicnd)vienf)v(gnh)

(@vec)Aan(@vd Abvec)a(bvd)
Y
(e nf) v(gAh)

(@vcve)A(avecvDhAa(avdve rn(@avdyvia
(bvcve)nbvcvDabvdve Ar((bvdvi)
Vv

(g ADh)

(avcvevg)A(avcvivg)an(avdvevg)a(avdvivag)
AN(bvcvevg)A(bvcvivg)an(bvdvevg)a(bvdvivag)
ANAflfavcvevh)aAn(avcvivh)aA(avdvevh)a(@vdvivh)

A(bvcvevhAbvecvivh)a(bvdvevh Aabvdvivh)



Exponential Blowup

* Our logic for eliminating v can lead to
exponential size increases.

 Not a problem with the algorithm; some
formulas produce exponentially large
CNF formulas.

 We will need to find another approach.



Equivalence and Equisatistiability

Recall: Two logical formulas ¢ and y are
are equivalent (denoted ¢ = ) if they
always take on the same truth values.

Two logical formulas ¢ and y are
equisatisfiable (denoted @ = ) if ¢ is
satisfiable iff y is satisfiable.

« Either ¢ and y are satisfiable, or ¢ and y are
unsatisfiable.

To solve SAT for a formula ¢, we can
instead solve SAT for an equisatisfiable .



Equisatistiably from NNF to CNF

(anbA—c)Vv(maAc)V( a ATb)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(anbA—C)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)Aa(bvg)a(Tcvq)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)Aa(bvg)a(Tcvq)

(7aAnc)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)Aa(bvg)a(Tcvq)

(favog)A(cvq)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)Aa(bvg)a(Tcvq)

(favog)A(cvq)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)A(bvg)a(-cvq)

(favog)A(cvq)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(Bva)a(Bva)a(feva)

A

(favog)A(cvq)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(Bva) (Bva)(feva)

A

(favog)A(cvq)



Equisatisfiably from NNF to CNF

-v(-aAc)v( a Ab)

(VR By~ (v
A
(-'av.)/\(cv.)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)A(bvg)a(-cvq)

(favog)A(cvq)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)A(bvg)a(-cvq)

A

(Rav-q)n(Bvaq)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)A(bvg)a(-cvq)

A

(Ravig) A (Bvha)



Equisatisfiably from NNF to CNF

-v(-aAc)v( a Ab)

(aVI)A(bVI)A(ﬂCVI)
N
(Ravid) A (v



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)A(bvg)a(-cvq)

(favog)A(cvq)



Equisatistiably from NNF to CNF

(aAbA—7c)v(7anc)Vv( a A"b)

(avg)A(bvg)a(cvg)a(mavg)A(cVvq)



Equisatistiably from NNF to CNF

((avg)Aa(bvg)a(~cvg)a(—av~g)A(cvq))v(aAb)

(avg)A(bvg)Aa(cvg)Aa(mavrg)A(cv™q)



Equisatistiably from NNF to CNF

((avg)Aa(bvg)a(~cvg)a(—av~g)A(cvq))v(aAb)



Equisatisfiably from NNF to CNF

(Bv A VeI v g A vg ) 10



Equisatisfiably from NNF to CNF

(Bv A VeI v g A vg ) 10




Equisatisfiably from NNF to CNF

(Bv A VeI v g A vg ) 10

((avq )A( bvg )a( meva )A( maveg )a( cvg )



Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)



Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)

a Ab



Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)

(a )a( b )



Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)

(anr )A(7bAr)



Equisatisfiably from NNF to CNF

(B0 BHa) A v A e 21

(I.vr)/\(Ilvr)/\(-vr)/\(-vr)/\(-vr)
A

(anr )A(7bAr)



Equisatistiably from NNF to CNF

((avg)Aa(bvqg)a(—cvg)Aa(ravg)A(cvmq))Vv( aATb)

(avqvr)aA( bvqvr)a( ,cvqvr)a( Tavgvr)A( cvqvr)
A

(anhr )A("bAT)



Equisatisfiably from NNF to CNF

((a¥a)a(bva)A(Teva)a(-avTa)A(sYa) )y ( o A 0)

( avlvr)/\( bvlvr)/\( -'cvlvr)/\( .v-'qu)/\( Iv-'qu)
A

(anhr)A(7bAT)



Equisatisfiably from NNF to CNF

BV A A A (oA e ) 17

( avlvl>/\( bvlvl>/\( -'cvlvl>/\( .v-'qvl>/\( Iv-'qvl>
A

(anr )A(7bAr)




Equisatisfiably from NNF to CNF

BV A A A (oA e ) 17

( avlvl>/\( bvlvl>/\( -'cvlvl>/\( .v-'qvl>/\( Iv-'qvl>
A
(a/\.)/\(-b/\.)




Equisatistiably from NNF to CNF

((avg)Aa(bvqg)a(—cvg)Aa(ravg)A(cvmq))Vv( aATb)

(avqvr)aA( bvqvr)a( ,cvqvr)a( Tavgvr)A( cvqvr)
A

(anhr )A("bAT)



Equisatisfiably from NNF to CNF

((a¥a)a(bva)A(Teva)a(-avTa)A(sYa) )y ( o A 0)

(avqvr)aA( bvqvr)a( ,cvqvr)a( Tavgvr)A( cvqvr)

A
(IA r )A(.A r )



Equisatisfiably from NNF to CNF

BV A A A (oA e ) 17

(avqvr)aA( bvqvr)a( ,cvqvr)a( Tavgvr)A( cvqvr)

A
i3 2 g



Equisatisfiably from NNF to CNF

BV A A A (oA e ) 17

( aqul>/\( bqul>/\( -'cqul>/\( -'av-'qvl)/\( cv-'qvl>
A
(B ) A (BB AT )




Equisatistiably from NNF to CNF

o If the formula is a literal, do nothing.

 If the formula is @ A y:
« Convert @ and y to CNE call it ¢' and y'.
. Yield @' A '

« If the formulais ¢ v y:

« Convert ¢ and y to CNF, call it @' and y'.
Create a new variable q.

Add g to each clause of @'.

Add —q to each clause of y'.

Yield @' A y'.

« Adds at most n new variables to each clause, where n is
the number of clauses. Size increase at worst quadratic.
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