Mathematical Logic Part Two

Announcements

- Problem Set 2 and Checkpoint 3 graded.
- Will be returned at end of lecture.
- Problem Set 3 due this Friday at 2:15PM.
- Stop by office hours questions!
- Email cs103-aut1213-staff@lists.stanford.edu with questions!

First-Order Logic

What is First-Order Logic?

- First-order logic is a logical system for reasoning about properties of objects.
- Augments the logical connectives from propositional logic with
- predicates that describe properties of objects, and
- functions that map objects to one another,
- quantifiers that allow us to reason about multiple objects simultaneously.

The Universe of Propositional Logic

The Universe of Propositional Logic

$$
p \wedge q \rightarrow \neg r \vee \neg s
$$

The Universe of Propositional Logic

$$
p \wedge q \rightarrow \neg r \vee \neg s
$$

The Universe of Propositional Logic

$p \wedge q \rightarrow \neg r \vee \neg s$

The Universe of Propositional Logic

$$
p \wedge q \rightarrow \neg r \vee \neg s
$$

Propositional Logic

- In propositional logic, each variable represents a proposition, which is either true or false.
- Consequently, we can directly apply connectives to propositions:
- $p \rightarrow q$
- $\neg p \wedge q$
- The truth or falsity of a statement can be determined by plugging in the truth values for the input propositions and computing the result.
- We can see all possible truth values for a statement by checking all possible truth assignments to its variables.

The Universe of First-Order Logic

The Universe of First-Order Logic

The Universe of First-Order Logic

The Universe of First-Order Logic

The sun

The Moon

The Universe of First-Order Logic

Venus

The Moon

The Universe of First-Order Logic

The Morning
Star

The Moon

The Universe of First-Order Logic

The Morning
Star

The Evening star
The Moon

First-Order Logic

- In first-order logic, each variable refers to some object in a set called the domain of discourse.
- Some objects may have multiple names.
- Some objects may have no name at all.

The Evening
Star

First-Order Logic

- In first-order logic, each variable refers to some object in a set called the domain of discourse.
- Some objects may have multiple names.
- Some objects may have no name at all.

The Morning
Star

The Evening
star

Propositional vs. First-Order Logic

- Because propositional variables are either true or false, we can directly apply connectives to them.
- $p \rightarrow q$
- $\neg p \leftrightarrow q \wedge r$
- Because first-order variables refer to arbitrary objects, it does not make sense to apply connectives to them.
- Venus \rightarrow Sun
- $137 \leftrightarrow \neg 42$
- This is not C!

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:
- GottaGetDownOn(Friday)
- LookingForwardTo(Weekend)
- ComesAfterwards(Sunday, Saturday)
- Predicates can take any number of arguments, but each predicate has a fixed number of arguments (called its arity)
- Applying a predicate to arguments produces a proposition, which is either true or false.

First-Order Sentences

- Sentences in first-order logic can be constructed from predicates applied to objects: $\operatorname{LikesToEat}(V, M) \wedge \operatorname{Near}(V, M) \rightarrow \operatorname{WillEat}(V, M)$

$$
\operatorname{Cute}(t) \rightarrow \operatorname{Dikdik}(t) \vee \operatorname{Kitty}(t) \vee \operatorname{Puppy}(t)
$$

$$
x<8 \rightarrow x<137
$$

The notation $\boldsymbol{x}<\mathbf{8}$ is just a shorthand for something like LessThan $(x, 8)$. Binary predicates in math are often written like this, but symbols like < are not a part of first-order logic.

Equality

- First-order logic is equipped with a special predicate $=$ that says whether two objects are equal to one another.
- Equality is a part of first-order logic, just as \rightarrow and \neg are.
- Examples:

> MorningStar $=$ EveningStar
> Glenda $=$ GoodWitchOfTheNorth

- Equality can only be applied to objects; to see if propositions are equal, use \leftrightarrow.

For notational simplicity, define \neq as

$$
x \neq y \equiv \neg(x=y)
$$

Expanding First-Order Logic

$$
x<8 \wedge y<8 \rightarrow x+y<16
$$

Expanding First-Order Logic

$$
x<8 \wedge y<8 \rightarrow x+y<16
$$

Why is this allowed?

Functions

- First-order logic allows functions that return objects associated with other objects.
- Examples:

$$
\begin{gathered}
x+y \\
\text { LengthOf(path) } \\
\text { MedianOf(x,y,z) }
\end{gathered}
$$

- As with predicates, functions can take in any number of arguments, but each function has a fixed arity.
- Functions evaluate to objects, not propositions.
- There is no syntactic way to distinguish functions and predicates; you'll have to look at how they're used.

How would we translate the statement

"For any natural number n, n is even iff n^{2} is even"
into first-order logic?

Quantifiers

- The biggest change from propositional logic to first-order logic is the use of quantifiers.
- A quantifier is a statement that expresses that some property is true for some or all choices that could be made.
- Useful for statements like "for every action, there is an equal and opposite reaction."

"For any natural number n, n is even iff n^{2} is even"

"For any natural number n, n is even iff n^{2} is even"

$\forall n .\left(n \in \mathbb{N} \rightarrow\left(\operatorname{Even}(n) \leftrightarrow \operatorname{Even}\left(n^{2}\right)\right)\right)$

"For any natural number n, n is even iff n^{2} is even"

$\forall n .\left(n \in \mathbb{N} \rightarrow\left(\operatorname{Even}(n) \leftrightarrow \operatorname{Even}\left(n^{2}\right)\right)\right)$

\forall is the universal quantifier and says "for any choice of n, the following is true."

The Universal Quantifier

- A statement of the form $\forall \boldsymbol{x}, \boldsymbol{\Psi}$ asserts that for every choice of x in our domain, ψ is true.
- Examples:
$\forall v .(\operatorname{Velociraptor}(v) \rightarrow$ WillEat $(v, m e))$
$\forall n .(n \in \mathbb{N} \rightarrow(E v e n(n) \leftrightarrow \neg \operatorname{Odd}(n)))$
Tallest $(x) \rightarrow \forall y .(x \neq y \rightarrow$ IsShorterThan $(y, x))$

Some velociraptor can open windows.

Some velociraptor can open windows.

$\exists v .($ Velociraptor $(v) \wedge$ OpensWindows(v))

Some velociraptor can open windows.

$\exists v .($ Velociraptor $(v) \wedge$ OpensWindows(v))

\exists is the existential quantifier and says "for some choice of v, the following is true."

The Existential Quantifier

- A statement of the form $\exists \boldsymbol{x} . \boldsymbol{\Psi}$ asserts that for some choice of x in our domain, ψ is true.
- Examples:
$\exists x .(E v e n(x) \wedge \operatorname{Prime}(x))$
$\exists x$. (TallerThan(x, me) ^LighterThan(x, me))
$(\exists x$. Appreciates $(\chi$, me $)) \rightarrow$ Happy (me)

Operator Precedence (Again)

- When writing out a formula in first-order logic, the quantifiers \forall and \exists have precedence just below \neg.
- Thus

$$
\forall x . P(x) \vee R(x) \rightarrow Q(x)
$$

is interpreted as

$$
((\forall x . P(x)) \vee R(x)) \rightarrow Q(x)
$$

rather than

$$
\forall x .((P(x) \vee R(x)) \rightarrow Q(x))
$$

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

$$
\forall x . \exists y .(x \neq y \wedge \operatorname{Loves}(x, y))
$$

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

$$
\forall x, \exists y .(x \neq y \wedge \operatorname{Loves}(x, y))
$$

For any person

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

$$
\forall x_{,} \exists y_{i}(x \neq y \wedge \operatorname{Loves}(x, y))
$$

For any person
There is some person

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

$$
\forall x_{,} \exists y_{i}(x \neq \wedge \wedge \operatorname{Loves}(x, y))
$$

For any person
There is some person
Who isn't them

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

$$
\forall x_{\boldsymbol{j}} \exists y_{\mathbf{i}}(x \neq \underset{\Delta}{ } y \wedge \operatorname{Lovę}(x, y))
$$

For any person
There is some person
Who isn't them
That they love

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

$$
\exists y . \forall x .(x \neq y \rightarrow \operatorname{Loves}(x, y))
$$

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

$$
\exists y . \forall x .(x \neq y \rightarrow \operatorname{Loves}(x, y))
$$

There is some

person

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

$$
\exists y . \forall x_{i}(x \neq y \rightarrow \operatorname{Loves}(x, y))
$$

There is some
person
that everyone

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

$$
\exists y_{i} \forall x_{i}(x \neq y \rightarrow \operatorname{Loves}(x, y))
$$

There is some
person
that everyone
who isn't them

Combining Quantifiers

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

$$
\exists y . \forall x_{\Delta}(x \neq y \rightarrow \underset{\Delta}{\operatorname{Loves}(x, y))}
$$

There is some
person
that everyone
who isn't them loves
$\forall x . \exists y .(x \neq y \wedge \operatorname{Loves}(x, y))$

$\exists y . \forall x .(x \neq y \rightarrow \operatorname{Loves}(x, y))$

$\exists y . \forall x .(x \neq y \rightarrow \operatorname{Loves}(x, y))$

This person does not
love anyone else.
$\forall x . \exists y .(x \neq y \wedge \operatorname{Loves}(x, y))$

$\forall x . \exists y .(x \neq y \wedge \operatorname{Loves}(x, y))$

$(\forall x . \exists y .(x \neq y \wedge \operatorname{Loves}(x, y))) \wedge$ $(\exists y . \forall x .(x \neq y \rightarrow \operatorname{Loves}(x, y)))$

The statement

$$
\forall x, \exists y . P(x, y)
$$

means "For any choice of x, there is some choice of y where $P(x, y)$."

The statement

$$
\exists y . \forall x . P(x, y)
$$

means "There is some choice of y where for any choice of $x, P(x, y)$."

Order matters when mixing existential and universal quantifiers!

A Note on the Checkpoints...

This Doesn't Work!

Theorem: If R is transitive, then R^{-1} is transitive. Proof: Consider any a, b, and c such that $a R b$ and $b R c$. Since R is transitive, we have $a R c$. Since $a R b$ and $b R c$, we have $b R^{-1} a$ and $c R^{-1} b$. Since we have $a R c$, we have $c R^{-1} a$. Thus $c R^{-1} b, b R^{-1} a$, and $c R^{-1} a$.

This proves
$\forall a . \forall b . \forall c .\left(a R b \wedge b R c \rightarrow c R^{-1} b \wedge b R^{-1} a \wedge c R^{-1} a\right)$
You need to show
$\forall a . \forall b . \forall c .\left(a R^{-1} b \wedge b R^{-1} c \rightarrow a R^{-1} c\right)$

Don't get tripped up by definitions!

To directly prove that $p \rightarrow q$, assume p and prove q.

A Correct Proof

$\forall a . \forall b . \forall c .\left(a R^{-1} b \wedge b R^{-1} c \rightarrow a R^{-1} c\right)$

Theorem: If R is transitive, then R^{-1} is transitive.
Proof: Consider any a, b, and c such that $a R^{-1} b$ and $b R^{-1} c$. We will prove $a R^{-1} c$. Since $a R^{-1} b$ and $b R^{-1} c$, we have that $b R a$ and $c R b$. Since $c R b$ and $b R a$, by transitivity we know $c R a$. Since $c R a$, we have $a R^{-1} c$, as required. \square

Back to First-Order Logic...

A Bad Translation

> Everyone who can outrun velociraptors won't get eaten.
$\forall x$. (FasterThanVelociraptors(x) $\wedge \neg$ WillBeEaten (x))

A Bad Translation

> Everyone who can outrun velociraptors won't get eaten.
$\forall x$. (FasterThanVelociraptors(x) $\wedge \neg$ WillBeEaten (x))

What happens if x refers to
someone slower than velociraptors
who does get eaten?

A Bad Translation

Everyone who can outrun velociraptors won't get eaten.

$\forall x$. FasterThanVelociraptors $(x) \wedge \neg$ WillBeEaten (x))

What happens if x refers to
someone slower than velociraptors
who does get eaten?

A Bad Translation

> Everyone who can outrun velociraptors won't get eaten.
$\forall x$. (FasterThanVelociraptors $(x) \wedge \neg$ WillBeEaten (x))

What happens if x refers to
someone slower than velociraptors
who does get eaten?

A Bad Translation

> Everyone who can outrun velociraptors won't get eaten.
$\forall x .($ FasterThanVelociraptors $(x) \wedge \neg$ WillBeEaten(x))

What happens if x refers to
someone slower than velociraptors
who does get eaten?

A Better Translation

Everyone who can outrun velociraptors won't get eaten.

$\forall x$. (FasterThanVelociraptors $(x) \rightarrow \neg$ WillBeEaten (x))

A Better Translation

> Everyone who can outrun velociraptors won't get eaten.
$\forall x$. (FasterThanVelociraptors $(x) \rightarrow \neg$ WillBeEaten (x))

What happens if x refers to
someone slower than velociraptors
who does get eaten?

"Whenever $P(x)$, then $Q(x)$ "

translates as

$$
\forall x .(P(x) \rightarrow Q(x))
$$

Another Bad Translation

There is some velociraptor that can open windows and eat me.
$\exists x .($ Velociraptor $(x) \wedge$ OpensWindows $(x) \rightarrow \operatorname{EatsMe}(x))$

Another Bad Translation

There is some velociraptor that can open windows and eat me.
$\exists x .($ Velociraptor $(x) \wedge$ OpensWindows $(x) \rightarrow$ EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)

Another Bad Translation

There is some velociraptor that can open windows and eat me.
$\exists x .($ Velociraptor(x) \wedge OpensWindows $(x) \rightarrow \operatorname{EatsMe}(x))$

What happens if

1. The above statement is false, but 2. x refers to me (I'm not a velociraptor!)

Another Bad Translation

There is some velociraptor that can open windows and eat me.
$\exists x .($ Velociraptor $(x) \wedge$ OpensWindows $(x) \rightarrow \operatorname{EatsMe}(x))$

What happens if

1. The above statement is false, but 2. x refers to me (I'm not a velociraptor!)

Another Bad Translation

There is some velociraptor that can open windows and eat me.
$\exists x .($ Velociraptor $(x) \wedge$ OpensWindows $(x) \rightarrow \operatorname{EatsMe}(x))$

What happens if

1. The above statement is false, but 2. x refers to me (I'm not a velociraptor!)

Another Bad Translation

There is some velociraptor that can open windows and eat me.
$\exists x .($ Velociraptor $(x) \wedge$ OpensWindows $(x) \rightarrow \operatorname{EatsMe}(x))$

What happens if

1. The above statement is false, but 2. x refers to me (I'm not a velociraptor!)

A Better Translation

There is some velociraptor that can open windows and eat me.
$\exists x .($ Velociraptor $(x) \wedge$ OpensWindows(x) \wedge EatsMe(x))

A Better Translation

There is some velociraptor that can open windows and eat me.
$\exists x .($ Velociraptor $(x) \wedge$ OpensWindows $(x) \wedge$ EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)

"There is some $P(x)$ where Q(x)"

translates as

ヨx. $(P(x) \wedge Q(x))$

The Takeaway Point

- Be careful when translating statements into first-order logic!
- \forall is usually paired with \rightarrow.
- \exists is usually paired with \wedge.

Quantifying Over Sets

- The notation

$$
\forall x \in S . P(x)
$$

means "for any element x of set $S, P(x)$ holds."

- This is not technically a part of first-order logic; it is a shorthand for

$$
\forall x .(x \in S \rightarrow P(x))
$$

- How might we encode this concept?

$$
\exists x \in S . P(x)
$$

Answer: $\exists x .(x \in S \wedge P(x))$.

Note the use of \wedge instead of \rightarrow here.

Quantifying Over Sets

- The syntax

$$
\begin{aligned}
& \forall x \in S . \varphi \\
& \exists x \in S . \varphi
\end{aligned}
$$

is allowed for quantifying over sets.

- In CS103, please do not use variants of this syntax.
- Please don't do things like this: $\forall x$ with $P(x) . Q(x)$
$\forall y$ such that $P(y) \wedge Q(y) . R(y)$.

Translating into First-Order Logic

- First-order logic has great expressive power and is often used to formally encode mathematical definitions.
- Let's go provide rigorous definitions for the terms we've been using so far.

Set Theory

"Two sets are equal iff they contain the same elements."

$$
S=T \leftrightarrow \forall x .(x \in S \leftrightarrow x \in T)
$$

Every possible element is either in both S and T, or it's in neither s nor T.

Set Theory

"Two sets are equal iff they contain the same elements."

$$
S=T \leftrightarrow \forall x .(x \in S \leftrightarrow x \in T)
$$

Is something missing?

Set Theory

"Two sets are equal iff they contain the same elements."

$$
\forall S . \forall T .(S=T \leftrightarrow \forall x .(x \in S \leftrightarrow x \in T))
$$

These quantifiers are critical here, but they don't appear anywhere in the English. Many statements asserting a general claim is true are implicitly universally quantified.

