
  

Mathematical Logic
Part Two



  

Announcements

● Problem Set 2 and Checkpoint 3 graded.
● Will be returned at end of lecture.

● Problem Set 3 due this Friday at 2:15PM.
● Stop by office hours questions!
● Email cs103-aut1213-staff@lists.stanford.edu 

with questions!

mailto:cs103-aut1213-staff@lists.stanford.edu


  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about 

multiple objects simultaneously.



  

The Universe of Propositional Logic
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The Universe of Propositional Logic
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Propositional Logic

● In propositional logic, each variable represents a 
proposition, which is either true or false.

● Consequently, we can directly apply connectives to 
propositions:
● p → q
● ¬p ∧ q

● The truth or falsity of a statement can be determined 
by plugging in the truth values for the input 
propositions and computing the result.

● We can see all possible truth values for a statement 
by checking all possible truth assignments to its 
variables.
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First-Order Logic

● In first-order logic, each variable refers 
to some object in a set called the domain 
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.
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Propositional vs. First-Order Logic

● Because propositional variables are either true or 
false, we can directly apply connectives to them.
● p → q
● ¬p ↔ q ∧ r

● Because first-order variables refer to arbitrary 
objects, it does not make sense to apply 
connectives to them.
● Venus → Sun
● 137 ↔ ¬42

● This is not C!



  

Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:
● GottaGetDownOn(Friday)
● LookingForwardTo(Weekend)
● ComesAfterwards(Sunday, Saturday)

● Predicates can take any number of arguments, but 
each predicate has a fixed number of arguments 
(called its arity)

● Applying a predicate to arguments produces a 
proposition, which is either true or false.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

MorningStar = EveningStar

Glenda = GoodWitchOfTheNorth
● Equality can only be applied to objects; to see 

if propositions are equal, use ↔.



  

For notational simplicity, define ≠ as

    x ≠ y   ≡   ¬(x = y)



  

Expanding First-Order Logic

x < 8 ∧ y < 8 → x + y < 16



  

Expanding First-Order Logic

x < 8 ∧ y < 8 → x + y < 16

Why is this allowed?



  

Functions

● First-order logic allows functions that return objects 
associated with other objects.

● Examples:

x + y

LengthOf(path)

MedianOf(x, y, z)
● As with predicates, functions can take in any number of 

arguments, but each function has a fixed arity.
● Functions evaluate to objects, not propositions.
● There is no syntactic way to distinguish functions and 

predicates; you'll have to look at how they're used.



  

How would we translate the 
statement

“For any natural number n,
n is even iff n2 is even”

into first-order logic?



  

Quantifiers

● The biggest change from propositional 
logic to first-order logic is the use of 
quantifiers.

● A quantifier is a statement that 
expresses that some property is true for 
some or all choices that could be made.

● Useful for statements like “for every 
action, there is an equal and opposite 
reaction.”
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∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 
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The Universal Quantifier

● A statement of the form ∀x. ψ asserts 
that for every choice of x in our domain, 
ψ is true.

● Examples:

∀v. (Velociraptor(v) → WillEat(v, me))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(x) → ∀y. (x ≠ y → IsShorterThan(y, x))



  

Some velociraptor can open windows.



  

Some velociraptor can open windows.

∃v. (Velociraptor(v) ∧ OpensWindows(v))



  

∃ is the existential quantifier 
and says “for some choice of 
v, the following is true.”
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The Existential Quantifier

● A statement of the form ∃x. ψ asserts 
that for some choice of x in our domain, 
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)



  

Operator Precedence (Again)

● When writing out a formula in first-order 
logic, the quantifiers ∀ and ∃ have 
precedence just below ¬.

● Thus

∀x. P(x) ∨ R(x) → Q(x)

is interpreted as

((∀x. P(x)) ∨ R(x)) → Q(x)

rather than

∀x. ((P(x) ∨ R(x)) → Q(x))



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “Everyone loves someone else.”
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∀x. ∃y. (x ≠ y ∧ Loves(x, y))



  

∃y. ∀x. (x ≠ y → Loves(x, y))



  

∃y. ∀x. (x ≠ y → Loves(x, y))

This person 
does not 

love anyone 
else.

This person 
does not 

love anyone 
else.



  

∀x. ∃y. (x ≠ y ∧ Loves(x, y))



  

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

No one here 
is universally 

loved.

No one here 
is universally 

loved.



  

(∀x. ∃y. (x ≠ y ∧ Loves(x, y))) ∧
(∃y. ∀x. (x ≠ y → Loves(x, y))) ∧



  

The statement

∀x. ∃y. P(x, y)

means “For any choice of x, there is
 some choice of y where P(x, y).”



  

The statement

∃y. ∀x. P(x, y)

means “There is some choice of y where
for any choice of x, P(x, y).”



  

Order matters when mixing existential 
and universal quantifiers!



  

A Note on the Checkpoints...



  

This Doesn't Work!

Theorem: If R is transitive, then R-1 is transitive.
Proof: Consider any a, b, and c such that aRb and

   bRc.  Since R is transitive, we have aRc. 
   Since aRb and bRc, we have bR-1a and
   cR-1b.  Since we have aRc, we have cR-1a.
   Thus cR-1b, bR-1a, and cR-1a. ■

 

This proves
 

∀a. ∀b. ∀c. (aRb ∧ bRc → cR-1b ∧ bR-1a ∧ cR-1a)
 

You need to show
 

∀a. ∀b. ∀c.  (aR-1b ∧ bR-1c → aR-1c)



  

Don't get tripped up by definitions!

To directly prove that p → q,
assume p and prove q.



  

A Correct Proof

Theorem: If R is transitive, then R-1 is transitive.
Proof: Consider any a, b, and c such that aR-1b and

  bR-1c.  We will prove aR-1c. Since aR-1b and
  bR-1c, we have that bRa and cRb.  Since cRb
  and bRa, by transitivity we know cRa.  Since
  cRa, we have aR-1c, as required. ■

 

∀a. ∀b. ∀c.  (aR-1b ∧ bR-1c → aR-1c)



  

Back to First-Order Logic...



  

A Bad Translation

Everyone who can outrun 
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) ∧ ¬WillBeEaten(x))
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someone slower than velociraptors 

who does get eaten?
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A Better Translation
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A Better Translation

Everyone who can outrun 
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) → ¬WillBeEaten(x))

What happens if x refers to 
someone slower than velociraptors 

who does get eaten?



  

“Whenever P(x), then Q(x)”

translates as

∀x. (P(x) → Q(x))



  

Another Bad Translation

There is some velociraptor that can open 
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) → EatsMe(x))



  

Another Bad Translation

There is some velociraptor that can open 
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) → EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)
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A Better Translation

There is some velociraptor that can open 
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) ∧ EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)



  

“There is some P(x) where 
Q(x)”

translates as

∃x. (P(x) ∧ Q(x))



  

The Takeaway Point

● Be careful when translating statements 
into first-order logic!

● ∀ is usually paired with →.
● ∃ is usually paired with ∧.



  

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) holds.”
● This is not technically a part of first-order 

logic; it is a shorthand for

∀x. (x ∈ S → P(x))
● How might we encode this concept?

∃x ∈ S. P(x)

Answer: ∃x. (x ∈ S ∧ P(x)).
Note the use of 
 instead of  ∧ →

here.

Note the use of 
 instead of  ∧ →

here.



  

Quantifying Over Sets

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.
● In CS103, please do not use variants of this 

syntax.
● Please don't do things like this:

∀x with P(x). Q(x)   

∀y such that P(y) ∧ Q(y). R(y).   



  

Translating into First-Order Logic

● First-order logic has great expressive 
power and is often used to formally 
encode mathematical definitions.

● Let's go provide rigorous definitions for 
the terms we've been using so far.



  

Set Theory

“Two sets are equal iff they contain the 
same elements.”

∀S. ∀T. (S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

Every possible element is 
either in both S and T, or 
it's in neither S nor T.

Every possible element is 
either in both S and T, or 
it's in neither S nor T.



  

Set Theory

“Two sets are equal iff they contain the 
same elements.”

∀S. ∀T. (S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

Is something missing?



  

Set Theory

“Two sets are equal iff they contain the 
same elements.”

∀S. ∀T. (S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

These quantifiers are critical here, 
but they don't appear anywhere in 

the English.  Many statements 
asserting a general claim is true 

are implicitly universally quantified.

These quantifiers are critical here, 
but they don't appear anywhere in 

the English.  Many statements 
asserting a general claim is true 

are implicitly universally quantified.
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