

Mathematical Logic
Part Two

Announcements

● Problem Set 2 and Checkpoint 3 graded.
● Will be returned at end of lecture.

● Problem Set 3 due this Friday at 2:15PM.
● Stop by office hours questions!
● Email cs103-aut1213-staff@lists.stanford.edu

with questions!

mailto:cs103-aut1213-staff@lists.stanford.edu

First-Order Logic

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about

multiple objects simultaneously.

The Universe of Propositional Logic

The Universe of Propositional Logic

p ∧ q → ¬r ∨ ¬s

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

p
r

q
s

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

pr qs

Propositional Logic

● In propositional logic, each variable represents a
proposition, which is either true or false.

● Consequently, we can directly apply connectives to
propositions:
● p → q
● ¬p ∧ q

● The truth or falsity of a statement can be determined
by plugging in the truth values for the input
propositions and computing the result.

● We can see all possible truth values for a statement
by checking all possible truth assignments to its
variables.

The Universe of First-Order Logic

The Universe of First-Order Logic

The Universe of First-Order Logic

The Sun

The Universe of First-Order Logic

The Sun

The Moon

The Universe of First-Order Logic

VenusThe Sun

The Moon

The Universe of First-Order Logic

Venus

The Morning
Star

The Sun

The Moon

The Universe of First-Order Logic

Venus

The Morning
Star

The Evening
Star

The Sun

The Moon

First-Order Logic

● In first-order logic, each variable refers
to some object in a set called the domain
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning

Star

The Evening
Star

First-Order Logic

● In first-order logic, each variable refers
to some object in a set called the domain
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning

Star

The Evening
Star

Propositional vs. First-Order Logic

● Because propositional variables are either true or
false, we can directly apply connectives to them.
● p → q
● ¬p ↔ q ∧ r

● Because first-order variables refer to arbitrary
objects, it does not make sense to apply
connectives to them.
● Venus → Sun
● 137 ↔ ¬42

● This is not C!

Reasoning about Objects

● To reason about objects, first-order logic uses
predicates.

● Examples:
● GottaGetDownOn(Friday)
● LookingForwardTo(Weekend)
● ComesAfterwards(Sunday, Saturday)

● Predicates can take any number of arguments, but
each predicate has a fixed number of arguments
(called its arity)

● Applying a predicate to arguments produces a
proposition, which is either true or false.

First-Order Sentences

● Sentences in first-order logic can be
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand
for something like LessThan(x, 8).
Binary predicates in math are often

written like this, but symbols like < are
not a part of first-order logic.

The notation x < 8 is just a shorthand
for something like LessThan(x, 8).
Binary predicates in math are often

written like this, but symbols like < are
not a part of first-order logic.

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:

MorningStar = EveningStar

Glenda = GoodWitchOfTheNorth
● Equality can only be applied to objects; to see

if propositions are equal, use ↔.

For notational simplicity, define ≠ as

 x ≠ y ≡ ¬(x = y)

Expanding First-Order Logic

x < 8 ∧ y < 8 → x + y < 16

Expanding First-Order Logic

x < 8 ∧ y < 8 → x + y < 16

Why is this allowed?

Functions

● First-order logic allows functions that return objects
associated with other objects.

● Examples:

x + y

LengthOf(path)

MedianOf(x, y, z)
● As with predicates, functions can take in any number of

arguments, but each function has a fixed arity.
● Functions evaluate to objects, not propositions.
● There is no syntactic way to distinguish functions and

predicates; you'll have to look at how they're used.

How would we translate the
statement

“For any natural number n,
n is even iff n2 is even”

into first-order logic?

Quantifiers

● The biggest change from propositional
logic to first-order logic is the use of
quantifiers.

● A quantifier is a statement that
expresses that some property is true for
some or all choices that could be made.

● Useful for statements like “for every
action, there is an equal and opposite
reaction.”

“For any natural number n,
n is even iff n2 is even”

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

The Universal Quantifier

● A statement of the form ∀x. ψ asserts
that for every choice of x in our domain,
ψ is true.

● Examples:

∀v. (Velociraptor(v) → WillEat(v, me))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(x) → ∀y. (x ≠ y → IsShorterThan(y, x))

Some velociraptor can open windows.

Some velociraptor can open windows.

∃v. (Velociraptor(v) ∧ OpensWindows(v))

∃ is the existential quantifier
and says “for some choice of
v, the following is true.”

∃ is the existential quantifier
and says “for some choice of
v, the following is true.”

Some velociraptor can open windows.

∃v. (Velociraptor(v) ∧ OpensWindows(v))

The Existential Quantifier

● A statement of the form ∃x. ψ asserts
that for some choice of x in our domain,
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)

Operator Precedence (Again)

● When writing out a formula in first-order
logic, the quantifiers ∀ and ∃ have
precedence just below ¬.

● Thus

∀x. P(x) ∨ R(x) → Q(x)

is interpreted as

((∀x. P(x)) ∨ R(x)) → Q(x)

rather than

∀x. ((P(x) ∨ R(x)) → Q(x))

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

For any person

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

For any person

There is some person

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

For any person

There is some person

Who isn't them

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

For any person

There is some person

Who isn't them

That they love

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone else
loves.”

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone else
loves.”

∃y. ∀x. (x ≠ y → Loves(x, y))

There is some
person

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone else
loves.”

∃y. ∀x. (x ≠ y → Loves(x, y))

There is some
person

that everyone

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone else
loves.”

∃y. ∀x. (x ≠ y → Loves(x, y))

There is some
person

who isn't them
that everyone

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone else
loves.”

∃y. ∀x. (x ≠ y → Loves(x, y))

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone else
loves.”

∃y. ∀x. (x ≠ y → Loves(x, y))

There is some
person

who isn't them loves
that everyone

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

∃y. ∀x. (x ≠ y → Loves(x, y))

∃y. ∀x. (x ≠ y → Loves(x, y))

This person
does not

love anyone
else.

This person
does not

love anyone
else.

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

∀x. ∃y. (x ≠ y ∧ Loves(x, y))

No one here
is universally

loved.

No one here
is universally

loved.

(∀x. ∃y. (x ≠ y ∧ Loves(x, y))) ∧
(∃y. ∀x. (x ≠ y → Loves(x, y))) ∧

The statement

∀x. ∃y. P(x, y)

means “For any choice of x, there is
 some choice of y where P(x, y).”

The statement

∃y. ∀x. P(x, y)

means “There is some choice of y where
for any choice of x, P(x, y).”

Order matters when mixing existential
and universal quantifiers!

A Note on the Checkpoints...

This Doesn't Work!

Theorem: If R is transitive, then R-1 is transitive.
Proof: Consider any a, b, and c such that aRb and

 bRc. Since R is transitive, we have aRc.
 Since aRb and bRc, we have bR-1a and
 cR-1b. Since we have aRc, we have cR-1a.
 Thus cR-1b, bR-1a, and cR-1a. ■

This proves

∀a. ∀b. ∀c. (aRb ∧ bRc → cR-1b ∧ bR-1a ∧ cR-1a)

You need to show

∀a. ∀b. ∀c. (aR-1b ∧ bR-1c → aR-1c)

Don't get tripped up by definitions!

To directly prove that p → q,
assume p and prove q.

A Correct Proof

Theorem: If R is transitive, then R-1 is transitive.
Proof: Consider any a, b, and c such that aR-1b and

 bR-1c. We will prove aR-1c. Since aR-1b and
 bR-1c, we have that bRa and cRb. Since cRb
 and bRa, by transitivity we know cRa. Since
 cRa, we have aR-1c, as required. ■

∀a. ∀b. ∀c. (aR-1b ∧ bR-1c → aR-1c)

Back to First-Order Logic...

A Bad Translation

Everyone who can outrun
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) ∧ ¬WillBeEaten(x))

A Bad Translation

Everyone who can outrun
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) ∧ ¬WillBeEaten(x))

What happens if x refers to
someone slower than velociraptors

who does get eaten?

A Bad Translation

Everyone who can outrun
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) ∧ ¬WillBeEaten(x))

What happens if x refers to
someone slower than velociraptors

who does get eaten?

A Bad Translation

Everyone who can outrun
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) ∧ ¬WillBeEaten(x))

What happens if x refers to
someone slower than velociraptors

who does get eaten?

A Bad Translation

Everyone who can outrun
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) ∧ ¬WillBeEaten(x))

What happens if x refers to
someone slower than velociraptors

who does get eaten?

A Better Translation

Everyone who can outrun
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) → ¬WillBeEaten(x))

A Better Translation

Everyone who can outrun
velociraptors won't get eaten.

∀x. (FasterThanVelociraptors(x) → ¬WillBeEaten(x))

What happens if x refers to
someone slower than velociraptors

who does get eaten?

“Whenever P(x), then Q(x)”

translates as

∀x. (P(x) → Q(x))

Another Bad Translation

There is some velociraptor that can open
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) → EatsMe(x))

Another Bad Translation

There is some velociraptor that can open
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) → EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)

Another Bad Translation

There is some velociraptor that can open
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) → EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)

Another Bad Translation

There is some velociraptor that can open
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) → EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)

Another Bad Translation

There is some velociraptor that can open
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) → EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)

Another Bad Translation

There is some velociraptor that can open
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) → EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)

A Better Translation

There is some velociraptor that can open
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) ∧ EatsMe(x))

A Better Translation

There is some velociraptor that can open
windows and eat me.

∃x. (Velociraptor(x) ∧ OpensWindows(x) ∧ EatsMe(x))

What happens if

1. The above statement is false, but
2. x refers to me (I'm not a velociraptor!)

“There is some P(x) where
Q(x)”

translates as

∃x. (P(x) ∧ Q(x))

The Takeaway Point

● Be careful when translating statements
into first-order logic!

● ∀ is usually paired with →.
● ∃ is usually paired with ∧.

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) holds.”
● This is not technically a part of first-order

logic; it is a shorthand for

∀x. (x ∈ S → P(x))
● How might we encode this concept?

∃x ∈ S. P(x)

Answer: ∃x. (x ∈ S ∧ P(x)).
Note the use of
 instead of ∧ →

here.

Note the use of
 instead of ∧ →

here.

Quantifying Over Sets

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.
● In CS103, please do not use variants of this

syntax.
● Please don't do things like this:

∀x with P(x). Q(x)

∀y such that P(y) ∧ Q(y). R(y).

Translating into First-Order Logic

● First-order logic has great expressive
power and is often used to formally
encode mathematical definitions.

● Let's go provide rigorous definitions for
the terms we've been using so far.

Set Theory

“Two sets are equal iff they contain the
same elements.”

∀S. ∀T. (S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

Every possible element is
either in both S and T, or
it's in neither S nor T.

Every possible element is
either in both S and T, or
it's in neither S nor T.

Set Theory

“Two sets are equal iff they contain the
same elements.”

∀S. ∀T. (S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

Is something missing?

Set Theory

“Two sets are equal iff they contain the
same elements.”

∀S. ∀T. (S = T ↔ ∀x. (x ∈ S ↔ x ∈ T))

These quantifiers are critical here,
but they don't appear anywhere in

the English. Many statements
asserting a general claim is true

are implicitly universally quantified.

These quantifiers are critical here,
but they don't appear anywhere in

the English. Many statements
asserting a general claim is true

are implicitly universally quantified.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

