
  

Mathematical Logic
Part One



  

Announcements

● Problem Session tonight from 7:00 – 7:50 
in 380-380X.
● Optional, but highly recommended!

● Problem Set 3 Checkpoint due right now.
● 2× Handouts

● Problem Set 3 Checkpoint Solutions
● Diagonalization

● Problem Set 2 Solutions distributed at end 
of class.



  

Office Hours

● We finally have stable office hours 
locations!

● Website will be updated soon with 
details.



  

An Important Question

How do we formalize the logic we've
been using in our proofs?



  

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Today / Wednesday)
● Reasoning about properties of multiple 

objects.



  

Propositional Logic



  

A proposition is a statement that is,
by itself, either true or false.



  

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this 

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.



  

More Propositions

● I'm a single lady.
● This place about to blow.
● Party rock is in the house tonight.
● We can dance if we want to.
● We can leave your friends behind.



  

Things That Aren't Propositions

Commands 
cannot be true 

or false.

Commands 
cannot be true 

or false.



  

Things That Aren't Propositions

Questions 
cannot be true 

or false.

Questions 
cannot be true 

or false.



  

Things That Aren't Propositions

I am the walrus,
goo goo g'joob

The first half 
is a valid 

proposition.

The first half 
is a valid 

proposition.

Jibberish cannot 
be true or 

false.

Jibberish cannot 
be true or 

false.



  

Propositional Logic

● Propositional logic is a mathematical system for 
reasoning about propositions and how they relate to 
one another.

● Propositional logic enables us to
● Formally encode how the truth of various propositions 

influences the truth of other propositions.
● Determine if certain combinations of propositions are 

always, sometimes, or never true.
● Determine whether certain combinations of propositions 

logically entail other combinations.



  

Variables and Connectives

● Propositional logic is a formal mathematical 
system whose syntax is rigidly specified.

● Every statement in propositional logic consists of 
propositional variables combined via logical 
connectives.
● Each variable represents some proposition, such as 

“You wanted it” or “You should have put a ring on it.”
● Connectives encode how propositions are related, 

such as “If you wanted it, you should have put a ring 
on it.”



  

Propositional Variables

● Each proposition will be represented by a 
propositional variable.

● Propositional variables are usually 
represented as lower-case letters, such 
as p, q, r, s, etc.
● If we need more, we can use subscripts: p1, 

p2, etc.

● Each variable can take one one of two 
values: true or false.



  

Logical Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if at least one of p or q are true (inclusive OR)
● Also called logical disjunction.



  

Truth Tables

p q p ∧ q
F
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T
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F
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T T

F
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Truth Tables

p q p ∧ q
F
F
T
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F

F
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T T

F
F

F If p is false and q is 
false, then “both p 
and q” is false.
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Truth Tables

p q p ∧ q
F
F
T
T

F

F
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T T

F
F

F

“both p and q” is 
true only when both p 

and q are true.



  

Truth Tables



  

Truth Tables

p q p ∨ q
F
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Truth Tables

p q p ∨ q
F
F
T
T

F

F
T

T T

T
F

T

“p or q” is true 
even if both p and 

q are true.  
Remember that there 
are three ways for 
“p or q” to be 

true!



  

Truth Tables

p ¬p
F
T F

T



  

Implication

● An important connective is logical 
implication: p → q.

● Recall: p → q means “if p is true, q is true 
as well.”

● Recall: p → q says nothing about what 
happens if p is false.

● Recall: p → q says nothing about 
causality; it just says that if p is true, q 
will be true as well.



  

Implication, Diagrammatically

Set of where Q is true

Set of where P is true



  

Implication, Diagrammatically

Set of where Q is true

Set of where P is true

Any time P is 
true, Q is 

true as well.



  

Implication, Diagrammatically

Set of where Q is true

Set of where P is true

Any time P is 
true, Q is 

true as well.

Any time P 
isn't true, Q 
may or may 
not be true.



  

When p Does Not Imply q

● p → q means “if p is true, q is true as well.”
● Recall: The only way for p → q to be false is 

if we know that p is true but q is false.
● Rationale:

● If p is false, p → q doesn't guarantee anything.  
It's true, but it's not meaningful.

● If p is true and q is true, then the statement “if 
p is true, then q is also true” is itself true.

● If p is true and q is false, then the statement “if 
p is true, q is also true” is false.



  

P → Q is false

Set of where Q is true

Set of 
where 

P is 
true



  

P → Q is false

Set of where Q is true

Set of 
where 

P is 
true

P can be 
true without 
Q being 

true as well



  

Truth Table for Implication

p q p → q
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Truth Table for Implication
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Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T
In both of these cases, 

p is false, so the 
statement “if p, then q” 

is vacuously true.
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Truth Table for Implication

p q p → q
F
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p is false, so the 
statement “if p, then q” 

is vacuously true.
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T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

p  q should mean →

when p is true, q is 
true as well.  But here 

p is true and q is 
false!
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p is true and q is 
false!
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Truth Table for Implication

p q p → q
F
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T
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F
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p  q means that if we →

ever find that p is 
true, we'll find that q 

is true as well.
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T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The only way for 
p   q to be false is →

for p to be true and 
q to be false.



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.

p q p ↔ q
F
F
T
T

F

F
T

T



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.

p q p ↔ q
F
F
T
T

F

F
T

T

One of p or q is true 
without the other.



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.

T
F
F

p q p ↔ q
F
F
T
T

F

F
T

T

Both p and q are false 
here, so the statement “p 
if and only if q” is true.



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.
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Both p and q are false 
here, so the statement “p 
if and only if q” is true.



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.
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The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Intuitively, either both p and q are true, 
or neither of them are.

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of  is ↔

to think of it as equality: 
the two propositions must 
have equal truth values.



  

True and False

● There are two more “connectives” to 
speak of: true and false.

● The symbol ⊤ is a value that is always 
true.

● The symbol ⊥ is value that is always 
false.

● These are often called connectives, 
though they don't connect anything.
● (Or rather, they connect zero things.)



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.
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Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:
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● All operators are right-associative.
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Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The logical connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Translating into Propositional Logic



  

Some Sample Propositions

I won't be eaten by a velociraptor if there 
isn't a velociraptor outside my apartment.

¬a → ¬e

a: There is a velociraptor outside my 
apartment.

b: Velociraptors can open windows.

c: I am in my apartment right now.

d: My apartment has windows.

e: I am going to be eaten by a velociraptor



  

“p if q”

translates to

q → p

It does not translate to

p → q



  

Some Sample Propositions

a: There is a velociraptor outside my 
apartment.

b: Velociraptors can open windows.

c: I am in my apartment right now.

d: My apartment has windows.

e: I am going to be eaten by a velociraptor

If there is a velociraptor outside my 
apartment, but it can't open windows, I am 
not going to be eaten by a velociraptor.

a ∧ ¬b → ¬e



  

“p, but q”

translates to

p ∧ q



  

Some Sample Propositions

a: There is a velociraptor outside my 
apartment.

b: Velociraptors can open windows.

c: I am in my apartment right now.

d: My apartment has windows.

e: I am going to be eaten by a velociraptor

I am only in my apartment when 
there are no velociraptors outside.

c → ¬a



  

“p only when q”

translates to

p → q



  

The Takeaway Point

● When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.
● In fact, this is one of the reasons we have a 

symbolic notation in the first place!

● Many prepositions lead to 
counterintuitive translations; make sure 
to double-check yourself!



  

Logical Equivalence



  

More Elaborate Truth Tables

p q p ∧ (p → q)
F
F
T
T

F

F
T

T



  

More Elaborate Truth Tables

p q p ∧ (p → q)
F
F
T
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F

F
T

T

We can't evaluate this until 
we have a value for p  q.→



  

More Elaborate Truth Tables

p q p ∧ (p → q)
F
F
T
T

F

F
T

T
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More Elaborate Truth Tables

p q p ∧ (p → q)
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This gives the final 
truth value for the 

expression.



  

Negations

● p ∧ q is false if and only if ¬(p ∧ q) is true.
● Intuitively, this is only possible if either p is false 

or q is false (or both!)
● In propositional logic, we can write this as 

¬p ∨ ¬q.
● How would we prove that ¬(p ∧ q) and ¬p ∨ ¬q 

are equivalent?
● Idea: Build truth tables for both expressions and 

confirm that they always agree.



  

Negating AND

p q ¬(p ∧ q)
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These two statements 
are always the same!



  

Logical Equivalence

● If two propositional logic statements φ and ψ always 
have the same truth values as one another, they are 
called logically equivalent.

● We denote this by φ ≡ ψ.  
● ≡ is not a connective.  Connectives are a part of logic 

statements; ≡ is something used to describe logic 
statements.
● It is part of the metalanguage rather than the language.

● If φ ≡ ψ, we can modify any propositional logic 
formula containing φ by replacing it with ψ.
● This is not true when we talk about first-order logic; we'll 

see why later.



  

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q) ≡ ¬p ∨ ¬q  
● We can also use truth tables to show that

¬(p ∨ q) ≡ ¬p ∧ ¬q  
● These two equivalences are called 

De Morgan's Laws.



  

More Negations

● When is p → q false?
● Answer: p must be true and q must be 

false.
● In propositional logic:

p ∧ ¬q  
● Is the following true?

¬(p → q) ≡ p ∧ ¬q  



  

Negating Implications



  

Negating Implications
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p → q ≡ ¬(p ∧ ¬q)

p → q ≡ ¬p ∨ ¬¬q

p → q ≡ ¬p ∨ q

● Thus p → q ≡ ¬p ∨ q

If p is false, the whole 
thing is true and we gain 
no information.  If p is 
true, then q has to be 
true for the whole 

expression to be true.



  

Another Idea

● We've just shown that ¬(p → q) ≡ p ∧ ¬q.
● Is it also true that ¬(p → q) ≡ p → ¬q?
● Let's go check!
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These are not the 
same thing!



  

To prove that p → q is false, do not prove 
p → ¬q.

Instead, prove that p ∧ ¬q is true.



  

Analyzing Proof 
Techniques



  

Proof by Contrapositive

● Recall that to prove that p → q, we can 
also show that ¬q → ¬p.

● Let's verify that p → q ≡ ¬q → ¬p.
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statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   
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● Suppose we want to prove the following 
statement:
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Theorem: If x + y = 16, then either x ≥ 8 or
  y ≥ 8.

Proof: By contrapositive.  We prove that if
x < 8 and y < 8, then x + y ≠ 16.  To
see this, note that

x + y < 8 + y
         < 8 + 8 
         = 16

So x + y < 16, so x + y ≠ 16. ■



  

Why This Matters

● Propositional logic is a tool for reasoning 
about how various statements affect one 
another.

● To better understand how to prove a result, it 
often helps to translate what you're trying to 
prove into propositional logic first.

● Note: To truly reason about proofs, we need 
the more expressive power of first-order 
logic, which we'll talk about next time.



  

Proof by Contradiction

● The general structure of a proof by 
contradiction is
● To show p, assume p is false.
● Show that p being false implies something 

that cannot be true.
● Conclude, therefore, that p is true.

● What does this look like in propositional 
logic?
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This statement 
is always true!



  

Tautologies

● A tautology is a statement that is always 
true.

● Examples:
● ⊤
● p ∨ ¬p (the Law of the Excluded Middle)
● ⊥ → p (vacuous truth)

● Once a tautology has been proven, we 
can use that tautology anywhere.



  

Next Time

● First-Order Logic
● How do we reason about multiple objects 

and their properties?
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