Mathematical Logic Part One

Announcements

- Problem Session tonight from 7:00-7:50 in 380-380X.
- Optional, but highly recommended!
- Problem Set 3 Checkpoint due right now.
- $2 \times$ Handouts
- Problem Set 3 Checkpoint Solutions
- Diagonalization
- Problem Set 2 Solutions distributed at end of class.

Office Hours

- We finally have stable office hours locations!
- Website will be updated soon with details.

An Important Question

How do we formalize the logic we've been using in our proofs?

Where We're Going

- Propositional Logic (Today)
- Basic logical connectives.
- Truth tables.
- Logical equivalences.
- First-Order Logic (Today / Wednesday)
- Reasoning about properties of multiple objects.

Propositional Logic

A proposition is a statement that is, by itself, either true or false.

Some Sample Propositions

- Puppies are cuter than kittens.
- Kittens are cuter than puppies.
- Usain Bolt can outrun everyone in this room.
- CS103 is useful for cocktail parties.
- This is the last entry on this list.

More Propositions

- I'm a single lady.
- This place about to blow.
- Party rock is in the house tonight.
- We can dance if we want to.
- We can leave your friends behind.

Things That Aren't Propositions

Things That Aren't Propositions

Things That Aren't Propositions

Propositional Logic

- Propositional logic is a mathematical system for reasoning about propositions and how they relate to one another.
- Propositional logic enables us to
- Formally encode how the truth of various propositions influences the truth of other propositions.
- Determine if certain combinations of propositions are always, sometimes, or never true.
- Determine whether certain combinations of propositions logically entail other combinations.

Variables and Connectives

- Propositional logic is a formal mathematical system whose syntax is rigidly specified.
- Every statement in propositional logic consists of propositional variables combined via logical connectives.
- Each variable represents some proposition, such as "You wanted it" or "You should have put a ring on it."
- Connectives encode how propositions are related, such as "If you wanted it, you should have put a ring on it."

Propositional Variables

- Each proposition will be represented by a propositional variable.
- Propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
- If we need more, we can use subscripts: p_{1}, $p_{2^{\prime}}$, etc.
- Each variable can take one one of two values: true or false.

Logical Connectives

- Logical NOT: $\neg \boldsymbol{p}$
- Read "not p "
- $\neg p$ is true if and only if p is false.
- Also called logical negation.
- Logical AND: $\boldsymbol{p} \wedge \boldsymbol{q}$
- Read " p and q."
- $p \wedge q$ is true if both p and q are true.
- Also called logical conjunction.
- Logical OR: p v q
- Read "p or q."
- $p \vee q$ is true if at least one of p or q are true (inclusive OR)
- Also called logical disjunction.

Truth Tables

p	q	$p \wedge q$
F	F	F
F	T	F
T	F	F
T	T	T

Truth Tables

p	q	$p \wedge q$	
F	F	F	
F	T	F	
T	F	F	If p is false and q is
T	T	T	false, then "both p
	and q° is false.		

Truth Tables

p	q
F	F
F	F
T	F
T	F
F	
T	T
T	T

Truth Tables

p	q	$p \wedge q$
F	F	F
F	T	F
T	F	F
T	T	T

Truth Tables

p	q	$p \wedge q$
F	F	F
F	T	F
T	F	F
T	T	T

Truth Tables

Truth Tables

Truth Tables

Truth Tables

" p or q " is true
even if both P and q are true. Remember that there are three ways for
"p or q" to be true:

Truth Tables

Implication

- An important connective is logical implication: $p \rightarrow q$.
- Recall: $p \rightarrow q$ means "if p is true, q is true as well."
- Recall: $p \rightarrow q$ says nothing about what happens if p is false.
- Recall: $p \rightarrow q$ says nothing about causality; it just says that if p is true, q will be true as well.

Implication, Diagrammatically

Set of where Q is true

Implication, Diagrammatically

Any time P is true, Q is true as well.

Set of where P is true

Set of where Q is true

Implication, Diagrammatically

 Any time P is true, Q is true as well.Set of where P is true

Set of where Q is true
Any time P isn't true, Q may or may not be true.

When p Does Not Imply q

- $p \rightarrow q$ means "if p is true, q is true as well."
- Recall: The only way for $p \rightarrow q$ to be false is if we know that p is true but q is false.
- Rationale:
- If p is false, $p \rightarrow q$ doesn't guarantee anything. It's true, but it's not meaningful.
- If p is true and q is true, then the statement "if p is true, then q is also true" is itself true.
- If p is true and q is false, then the statement "if p is true, q is also true" is false.

Set of where Q is true

Truth Table for Implication

p	q	$p \rightarrow q$
F	F	
F	T	
T	F	
T	T	

Truth Table for Implication

Truth Table for Implication

In both of these cases,
p is false, so the statement "if p, then q " is vacuously true.

Truth Table for Implication

In both of these cases,
p is false, so the statement "if p, then q " is vacuously true.

Truth Table for Implication

Truth Table for Implication

$p \rightarrow q$ should mean
when p is true, q is
F T T true as well. But here
p is true and q is
false:

Truth Table for Implication

$p \rightarrow q$ should mean
when p is true, q is
F T T true as well. But here
p is true and q is
false:

Truth Table for Implication

Truth Table for Implication

Truth Table for Implication

Truth Table for Implication

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

Truth Table for Implication

The only way for $p \rightarrow q$ to be false is
for p to be true and of to be false.

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	
F	T	
T	F	
T	T	

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	
F	T	
T	F	
T	T	

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	
F	T	
T	F	
T	T	

One of p or q is true without the other.

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	
F	T	F
T	F	F
T	T	

One of p or q is true without the other.

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	
F	T	F
T	F	F
T	T	

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	
F	T	F
T	F	F
T	T	T

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	
F	T	F
T	F	F
T	T	T

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$	Both p and q are false nere, so the statement " p if and only if q_{0} is true.
F	F		
F	T	F	
T	F	F	
T	T	T	

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$	Both p and q are false here, so the statement " p if and only if q_{0} is true.
F	F	T	
F	T	F	
T	F	F	
T	T	T	

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

The Biconditional

- The biconditional connective $p \leftrightarrow q$ is read " p if and only if q."
- Intuitively, either both p and q are true, or neither of them are.

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

One interpretation of \leftrightarrow is to think of it as equality:
the two propositions must have equal truth values.

True and False

- There are two more "connectives" to speak of: true and false.
- The symbol T is a value that is always true.
- The symbol \perp is value that is always false.
- These are often called connectives, though they don't connect anything.
- (Or rather, they connect zero things.)

Operator Precedence

- How do we parse this statement?

$$
\neg \mathrm{x} \rightarrow \mathrm{y} \vee \mathrm{z} \rightarrow \mathrm{x} \vee \mathrm{y} \wedge \mathrm{z}
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
\neg \mathrm{x} \rightarrow \mathrm{y} \vee \mathrm{z} \rightarrow \mathrm{x} \vee \mathrm{y} \wedge \mathrm{z}
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg \mathrm{x}) \rightarrow \mathrm{y} \vee \mathrm{z} \rightarrow \mathrm{x} \vee \mathrm{y} \wedge \mathrm{z}
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg \mathrm{x}) \rightarrow \mathrm{y} \vee \mathrm{z} \rightarrow \mathrm{x} \vee \mathrm{y} \wedge \mathrm{z}
$$

- Operator precedence for propositional logic:

$$
\begin{aligned}
& \neg \\
& \Lambda \\
& \mathrm{V} \\
& \rightarrow \\
& \leftrightarrow
\end{aligned}
$$

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg \mathrm{x}) \rightarrow \mathrm{y} \vee \mathrm{z} \rightarrow \mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z})
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg \mathrm{x}) \rightarrow \mathrm{y} \vee \mathrm{z} \rightarrow \mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z})
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg \mathrm{x}) \rightarrow(\mathrm{y} \vee \mathrm{z}) \rightarrow(\mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z}))
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg \mathrm{x}) \rightarrow(\mathrm{y} \vee \mathrm{z}) \rightarrow(\mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z}))
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

- How do we parse this statement?

$$
(\neg \mathrm{x}) \rightarrow((\mathrm{y} \vee \mathrm{z}) \rightarrow(\mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z})))
$$

- Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Recap So Far

- A propositional variable is a variable that is either true or false.
- The logical connectives are
- Negation: $\neg p$
- Conjunction: $p \wedge q$
- Disjunction: $p \vee q$
- Implication: $p \rightarrow q$
- Biconditional: $p \leftrightarrow q$
- True: T
- False: \perp

Translating into Propositional Logic

Some Sample Propositions

a : There is a velociraptor outside my apartment.
b : Velociraptors can open windows.
c : I am in my apartment right now.
d : My apartment has windows.
e : I am going to be eaten by a velociraptor
I won't be eaten by a velociraptor if there isn't a velociraptor outside my apartment.

$$
\neg a \rightarrow \neg e
$$

" p if q "
 translates to

$$
q \rightarrow p
$$

It does not translate to

$$
p \rightarrow q
$$

Some Sample Propositions

a : There is a velociraptor outside my apartment.
b : Velociraptors can open windows.
c: I am in my apartment right now.
d : My apartment has windows.
e : I am going to be eaten by a velociraptor
If there is a velociraptor outside my
apartment, but it can't open windows, I am
not going to be eaten by a velociraptor.
$a \wedge \neg b \rightarrow \neg e$

" p, but q "

translates to

$$
p \wedge q
$$

Some Sample Propositions

a : There is a velociraptor outside my apartment.
b : Velociraptors can open windows.
c: I am in my apartment right now.
d : My apartment has windows.
e : I am going to be eaten by a velociraptor
I am only in my apartment when there are no velociraptors outside.

$$
c \rightarrow \neg a
$$

" p only when q "

translates to

$$
p \rightarrow q
$$

The Takeaway Point

- When translating into or out of propositional logic, be very careful not to get tripped up by nuances of the English language.
- In fact, this is one of the reasons we have a symbolic notation in the first place!
- Many prepositions lead to counterintuitive translations; make sure to double-check yourself!

Logical Equivalence

More Elaborate Truth Tables

p	q	$p \wedge(p \rightarrow q)$
F	F	
F	T	
T	F	
T	T	

\section*{More Elaborate Truth Tables} | | $\begin{array}{l}\text { We can't evaluate this until } \\ \text { we have a value for } p \rightarrow q_{0}\end{array}$ | |
| :--- | :--- | :--- |
| p | q | $p \wedge(p \rightarrow q)$ |
| F | F | |
| F | T | |
| T | F | |
| T | T | |

More Elaborate Truth Tables

More Elaborate Truth Tables

p	q	$p \wedge(p \rightarrow q)$
F	F	T
F	T	T
T	F	F
T	T	T

More Elaborate Truth Tables

More Elaborate Truth Tables

p	q	$p \wedge(p \rightarrow q)$
F	F	F
T		
F	T	F
T		
T	F	F
F		
T	T	T
T		

More Elaborate Truth Tables

This gives the final truth value for the expression.

p	q	$p \Lambda^{\prime}(p \rightarrow q)$
F	F	F
F	T	
T	F	T
T	F	F
T		
T	T	T
	T	

Negations

- $p \wedge q$ is false if and only if $\neg(p \wedge q)$ is true.
- Intuitively, this is only possible if either p is false or q is false (or both!)
- In propositional logic, we can write this as $\neg p \vee \neg q$.
- How would we prove that $\neg(p \wedge q)$ and $\neg p \vee \neg q$ are equivalent?
- Idea: Build truth tables for both expressions and confirm that they always agree.

Negating AND

$$
\begin{array}{l|l|l}
p & q & \neg(p \wedge q) \\
\hline \mathrm{F} & \mathrm{~F} & \\
\mathrm{~F} & \mathrm{~T} & \\
\mathrm{~T} & \mathrm{~F} & \\
\mathrm{~T} & \mathrm{~T} &
\end{array}
$$

Negating AND

p	q
F	$\neg \wedge q)$
F	F
F	T
T	F
T	F
T	T

Negating AND

p	q	$\neg(p \wedge q)$	
F	F	T	F
F	T	T	F
T	F	T	F
T	T	F	T

Negating AND

p	q	$\neg(p \wedge q)$
F	F	T
F		
F	T	T
F		
T	F	T
F		
T	T	F
T		

Negating AND

\section*{| p | q | $\neg(p \wedge q)$ | p | q | $\sim p \vee \neg q$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | F | T | F | F | F |
| F | T | T | F | F | T |
| T | F | T | F | T | F |
| T | T | F | T | T | T |}

Negating AND

\section*{| p | q | $\neg(p \wedge q)$ |
| :---: | :---: | :---: |
| F | F | T |
| F | | |
| F | T | T |
| F | | |
| T | F | T |
| F | | |
| T | T | F |
| T | T | |
 | p | q | $\neg p \vee \neg q$ |
| :--- | :--- | :--- |
| F | F | T |
| F | T | T |
| T | F | F |
| T | T | F |}

Negating AND

p	q	$\neg(p \wedge q)$		p	q	$\neg p \vee$
F	F	T	F	F	F	T
F	T	T				
T	F	F	T	T	F	
T	F	T	F	T	F	F
T	T	F	T	T	T	F
			F			

Negating AND

p	q	$\neg(p \wedge q)$	p	q	$\neg p$	\vee	$\neg q$
F	F	T	F	F	F	T	T
T							
F	T	T	F	F	T	T	T
F							
T	F	T	F	T	F	F	T
T							
T	T	F	T	T	T	F	F
F							

Negating AND

p	q	$\neg(p \wedge q)$		p	q	$\neg p$	\vee
F	$\neg q$						
F	F	T	F	F	F	T	T

Negating AND

p	q	$\neg(p \wedge q)$		p	q	$\neg p \vee$	$\neg q$
F	F	T	F	F	F	T	T
T							
F	T	T	F	F	T	T	T
F							
T	F	T	F	T	F	F	T
T							
T	T	F	T	T	T	F	F
	F						

These two statements are always the same:

Logical Equivalence

- If two propositional logic statements φ and ψ always have the same truth values as one another, they are called logically equivalent.
- We denote this by $\boldsymbol{\varphi} \equiv \boldsymbol{\Psi}$.
- \equiv is not a connective. Connectives are a part of logic statements; \equiv is something used to describe logic statements.
- It is part of the metalanguage rather than the language.
- If $\varphi \equiv \psi$, we can modify any propositional logic formula containing φ by replacing it with ψ.
- This is not true when we talk about first-order logic; we'll see why later.

De Morgan's Laws

- Using truth tables, we concluded that

$$
\neg(p \wedge q) \equiv \neg p \vee \neg q
$$

- We can also use truth tables to show that

$$
\neg(p \vee q) \equiv \neg p \wedge \neg q
$$

- These two equivalences are called De Morgan's Laws.

More Negations

- When is $p \rightarrow q$ false?
- Answer: p must be true and q must be false.
- In propositional logic:

$$
p \wedge \neg q
$$

- Is the following true?

$$
\neg(p \rightarrow q) \equiv p \wedge \neg q
$$

Negating Implications

Negating Implications

p	q	$\neg(p \rightarrow q)$
F	F	
F	T	
T	F	
T	T	

Negating Implications

p	q
	$\neg(p \rightarrow q)$
F	F
F	T
T	T
T	F
T	T

Negating Implications

p	q	$\neg(p \rightarrow q)$
F	F	F
F		
F	T	F
T		
T	F	T
F		
T	T	F
T		

Negating Implications

$$
\begin{array}{c|c|c}
p & q & \neg(p \rightarrow q) \\
\hline \mathrm{F} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~T} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} \\
\mathrm{~F} \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~T}
\end{array}
$$

Negating Implications

p	q	$\neg(p \rightarrow q)$	p	q	$p \wedge \neg q$	
F	F	F	T	F	F	
F	T	F	T	F	T	
T	F	T	F	T	F	
T	T	F	T	T	T	

Negating Implications

p	q	$\neg(p \rightarrow q)$	p	q	$p \wedge \neg q$
F	F	F	T	F	F
F	F				
F	F	T	F	T	F
T	F	T	F	T	F
T					
T	T	F	T	T	T
T					

Negating Implications

p	q	$\neg(p \rightarrow q)$	p	q	$p \wedge \neg q$	
F	F	F	T	F	F	F
F	T	F	T	T		
T	F	T	F	T	F	F
T	T	F	T	T	F	T
T						
		T	T	T	F	

Negating Implications

p	q	$\neg(p \rightarrow q)$	p	q	$p \wedge$	$\sim q$	
F	F	F	T	F	F	F	F
T							
F	T	F	T	F	T	F	F
F							
T	F	T	F	T	F	T T	T
T	T	F	T	T	T	T	F
F							

Negating Implications

p	q	$\neg(p \rightarrow q)$	p	q	$p \wedge$	$\wedge q$		
F	F	F	T	F	F	F	F	T
F	T	F	T	F	T	F	F	F
T	F	T	F	T	F	T	T	T
T	T	F	T	T	T	T	F	F

Negating Implications

$$
\begin{array}{c|c|cc|c|ccc}
p & q & \neg(p \rightarrow q) & p & q & p \wedge & \neg q \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~T} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~F} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~F} \\
& & \neg(p \rightarrow q) \equiv p & \wedge & \neg q
\end{array}
$$

An Important Observation

- We have just proven that

$$
\neg(p \rightarrow q) \equiv p \wedge \neg q
$$

- If we negate both sides, we get that

$$
p \rightarrow q \equiv \neg(p \wedge \neg q)
$$

- By De Morgan's laws:

$$
\begin{aligned}
& p \rightarrow q \equiv \neg(p \wedge \neg q) \\
& p \rightarrow q \equiv \neg p \vee \neg \neg q \\
& p \rightarrow q \equiv \neg p \vee q
\end{aligned}
$$

- Thus $\boldsymbol{p} \rightarrow \boldsymbol{q} \equiv \neg \boldsymbol{p} \vee \boldsymbol{q}$

An Important Observation

- We have just proven that

$$
\neg(p \rightarrow q) \equiv p \wedge \neg q
$$

- If we negate both sides, we get that

$$
p \rightarrow q \equiv \neg(p \wedge \neg q)
$$

- By De Morgan's laws:

$$
\begin{aligned}
& p \rightarrow q \equiv \neg(p \wedge \neg q) \\
& p \rightarrow q \equiv \neg p \vee \neg \neg q \\
& p \rightarrow q \equiv \neg p \vee q
\end{aligned}
$$

- Thus $\boldsymbol{p} \rightarrow \boldsymbol{q} \equiv \neg \boldsymbol{p} \vee \boldsymbol{q}$

If p is false, the whole thing is true and we gain no information. If p is true, then q has to be true for the whole expression to be true.

Another Idea

- We've just shown that $\neg(p \rightarrow q) \equiv p \wedge \neg q$.
- Is it also true that $\neg(p \rightarrow q) \equiv p \rightarrow \neg q$?
- Let's go check!

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$
F	F	
F	T	
T	F	
T	T	

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$
F	F	F
T		
F	T	F
T		
T	F	T
F		
T	T	F
T		

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow \neg q$
F	F	F	T	F	F
F	T	F	T	F	T
T	F	T	F	T	F
T	T	F	T	T	T

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow \neg q$
F	F	F	T	F	F
F					
F	T	F	T	F	T

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow \neg q$	
F	F	F	T	F	F	F
F	T	F	T	T		
T	F	T	F	T	F	F
T	T	F	T	F	T	T
			T	T	F	

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow \neg q$	
F	F	F	T	F	F	F
T	T					
F	T	F	T	F	T	F
T	F					
T	F	T	F	T	F	T
T	T					
T	T	F	T	T	T	T
	F					

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow \neg q$		
F	F	F	T	F	F	F	T
T							
F	T	F	T	F	T	F	T
T							
T	F	T	F	T	F	T	T
T	T	F	T	T	T	T	F

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow$	$\neg q$	
F	F	F	T	F	F	F	T
T							
F	T	F	T	F	T	F	T
F							
T	F	T	F	T	F	T	T
T							
T	T	F	T	T	T	T	
	F						

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow$	$\neg q$		
F	F	F	T	F	F	F	T	T
F	T	F	T	F	T	F	T	F
T	F	T	F	T	F	T	T	T
T	T	F	T	T	T	T	F	F

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow \neg q$			
F	F	F	T	F	F	F	T	T
F	T	F	T	F	T	F	T	F
T	F	T	F	T	F	T	T	T
T	T	F	T	T	T	T	F	F

$\neg(p \rightarrow q)$ and $p \rightarrow \neg q$

p	q	$\neg(p \rightarrow q)$	p	q	$p \rightarrow \neg q$		
F	F	F	T	F	F	F	T
T							
F	T	F	T	F	T	F	T
F							
T	F	T	F	T	F	T	T
T							
T	T	F	T	T	T	T	F
T							

These are not the
same thing!

To prove that $p \rightarrow q$ is false, do not prove $p \rightarrow \neg q$.

Instead, prove that $p \wedge \neg q$ is true.

Analyzing Proof Techniques

Proof by Contrapositive

- Recall that to prove that $p \rightarrow q$, we can also show that $\neg q \rightarrow \neg p$.
- Let's verify that $p \rightarrow q \equiv \neg q \rightarrow \neg p$.

The Contrapositive

p	q	$p \rightarrow q$
F	F	
F	T	
T	F	
T	T	

The Contrapositive

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

The Contrapositive

p	q	$p \rightarrow q$	p	q	$\sim q \rightarrow \neg p$
F	F	T	F	F	
F	T	T	F	T	
T	F	F	T	F	
T	T	T	T	T	

The Contrapositive

p	q	$p \rightarrow q$	p	q	$\neg q \rightarrow \neg p$
F	F	T	F	F	T
F	T	T	F	T	F
T	F	F	T	F	T
T	T	T	T	T	F

The Contrapositive

p	q	$p \rightarrow q$	p	q	$\neg q \rightarrow \neg p$	
F	F	T	F	F	T	T
F	T	T	F	T	F	T
T	F	F	T	F	T	F
T	T	T	T	T	F	F

The Contrapositive

p	q	$p \rightarrow q$	p	q	$\neg q \rightarrow$	$\neg p$	
F	F	T	F	F	T	T	T
F	T	T	F	T	F	T	
T	F	F	T	F	T	F	
T	T	T	T	T	F	F	

The Contrapositive

p	q	$p \rightarrow q$	p	q	$\neg q$	\rightarrow	$\neg p$
F	F	T	F	F	T	T	T
F	T	T	F	T	F	T	T
T	F	F	T	F	T		F
T	T	T	T	T	F	F	

The Contrapositive

p	q	$p \rightarrow q$	p	q	$\neg q$	\rightarrow	$\neg p$
F	F	T	F	F	T	T	T
F	T	T	F	T	F	T	T
T	F	F	T	F	T	F	F
T	T	T	T	T	F		F

The Contrapositive

p	q	$p \rightarrow q$	p	q	$\neg q$	\rightarrow	$\neg p$
F	F	T	F	F	T	T	T
F	T	T	F	T	F	T	T
T	F	F	T	F	T	F	F
T	T	T	T	T	F	T	F

The Contrapositive

p	q	$p \rightarrow q$	p	q	$\neg q$	\rightarrow	$\neg p$
F	F	T	F	F	T	T	T
F	T	T	F	T	F	T	T
T	F	F	T	F	T	F	F
T	T	T	T	T	F	T	F

The Contrapositive

$$
\begin{array}{c|c|cc|c|ccc}
p & q & p \rightarrow q & p & q & \neg & \rightarrow & \neg p \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
& \\
& & \\
& &
\end{array}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " }
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{gathered}
\text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 " \\
x+y=16 \rightarrow x \geq 8 v y \geq 8
\end{gathered}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{gathered}
\text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 " \\
x+y=16 \rightarrow x \geq 8 v y \geq 8
\end{gathered}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \neg(x \geq 8 \vee y \geq 8) \rightarrow \neg(x+y=16)
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \neg(x \geq 8 \vee y \geq 8) \rightarrow \neg(x+y=16)
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \neg(x \geq 8 \vee y \geq 8) \rightarrow \neg(x+y=16)
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \quad \neg(x \geq 8 \vee y \geq 8) \rightarrow x+y \neq 16
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 " \\
& \quad \neg(x \geq 8 \vee y \geq 8) \rightarrow x+y \neq 16
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \quad \neg(x \geq 8 \vee y \geq 8) \rightarrow x+y \neq 16
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \neg(x \geq 8) \wedge \neg(y \geq 8) \rightarrow x+y \neq 16
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \neg(x \geq 8) \wedge \neg(y \geq 8) \rightarrow x+y \neq 16
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \neg(x \geq 8) \wedge \neg(y \geq 8) \rightarrow x+y \neq 16
\end{aligned}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{gathered}
\text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 " \\
x<8 \wedge \neg(y \geq 8) \rightarrow x+y \neq 16
\end{gathered}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{gathered}
\text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 " \\
x<8 \wedge \neg(y \geq 8) \rightarrow x+y \neq 16
\end{gathered}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{gathered}
\text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 " \\
x<8 \wedge \neg(y \geq 8) \rightarrow x+y \neq 16
\end{gathered}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{gathered}
\text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 " \\
x<8 \wedge y<8 \rightarrow x+y \neq 16
\end{gathered}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{gathered}
\text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 " \\
x<8 \wedge y<8 \rightarrow x+y \neq 16
\end{gathered}
$$

Why All This Matters

- Suppose we want to prove the following statement:

$$
\begin{aligned}
& \text { "If } x+y=16 \text {, then } x \geq 8 \text { or } y \geq 8 \text { " } \\
& \qquad x<8 \wedge y<8 \rightarrow x+y \neq 16 \\
& \text { "If } x<8 \text { and } y<8 \text {, then } x+y \neq 16 \text { " }
\end{aligned}
$$

Theorem: If $x+y=16$, then either $x \geq 8$ or $y \geq 8$.

Proof: By contrapositive. We prove that if $x<8$ and $y<8$, then $x+y \neq 16$. To see this, note that

$$
\begin{aligned}
x+y & <8+y \\
& <8+8 \\
& =16
\end{aligned}
$$

So $x+y<16$, so $x+y \neq 16$.

Why This Matters

- Propositional logic is a tool for reasoning about how various statements affect one another.
- To better understand how to prove a result, it often helps to translate what you're trying to prove into propositional logic first.
- Note: To truly reason about proofs, we need the more expressive power of first-order logic, which we'll talk about next time.

Proof by Contradiction

- The general structure of a proof by contradiction is
- To show p, assume p is false.
- Show that p being false implies something that cannot be true.
- Conclude, therefore, that p is true.
- What does this look like in propositional logic?

Proof by Contradiction

- The general structure of a proof by contradiction is
- To show p, assume p is false.
- Show that p being false implies something that cannot be true.
- Conclude, therefore, that p is true.
- What does this look like in propositional logic?
$\neg p$

Proof by Contradiction

- The general structure of a proof by contradiction is
- To show p, assume p is false.
- Show that p being false implies something that cannot be true.
- Conclude, therefore, that p is true.
- What does this look like in propositional logic?

$$
\neg p \rightarrow \perp
$$

Proof by Contradiction

- The general structure of a proof by contradiction is
- To show p, assume p is false.
- Show that p being false implies something that cannot be true.
- Conclude, therefore, that p is true.
- What does this look like in propositional logic?

$$
(\neg p \rightarrow \perp) \rightarrow p
$$

Proof by Contradiction

Proof by Contradiction

$$
\begin{aligned}
& p(\neg p \rightarrow \perp) \rightarrow p \\
& \mathrm{~F} \\
& \mathrm{~T}
\end{aligned}
$$

Proof by Contradiction

$$
\begin{array}{l|l}
p(\neg p \rightarrow \perp) \rightarrow p \\
\hline \mathrm{~F} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F}
\end{array}
$$

Proof by Contradiction

$$
\begin{array}{l|ll}
p & (\neg p \rightarrow \perp) \rightarrow p \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F}
\end{array}
$$

Proof by Contradiction

$$
\begin{array}{l|ll}
p(\neg p \rightarrow & \perp) \rightarrow p \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~T} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~F}
\end{array}
$$

Proof by Contradiction

Proof by Contradiction

$$
\begin{array}{cccccc}
p & (\neg p & \rightarrow & \perp) & p \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T}
\end{array}
$$

Proof by Contradiction

$$
\begin{array}{cccccc}
p(\neg p & \rightarrow & \perp) & \rightarrow & p \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & & \mathrm{~T}
\end{array}
$$

Proof by Contradiction

$$
\begin{array}{llllll}
p(\neg p & \rightarrow & \perp & \rightarrow & p \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T}
\end{array}
$$

Proof by Contradiction

$$
\begin{array}{l|lllll}
p & (\neg p & \rightarrow & \perp & \rightarrow & p \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T}
\end{array}
$$

Proof by Contradiction

$$
\begin{array}{l|llllll}
p & (\neg p & \rightarrow & \perp) & \rightarrow & p \\
\hline \text { F } & \text { T } & \mathrm{F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T}
\end{array}
$$

This statement
is always true:

Tautologies

- A tautology is a statement that is always true.
- Examples:
- T
- $p \vee \neg p$ (the Law of the Excluded Middle)
- $\perp \rightarrow p$ (vacuous truth)
- Once a tautology has been proven, we can use that tautology anywhere.

Next Time

- First-Order Logic
- How do we reason about multiple objects and their properties?

