
  

The Pigeonhole Principle



  

Friday Four Square
Today at 4:15PM, Outside Gates

(Weather Permitting)



  

Announcements

● Problem Set 2 due right now.
● Problem Set 3 goes out.

● Checkpoint due Monday, October 15.
● Remainder due Friday, October 19.

● Play around with graphs, relations, 
functions, cardinality, and the pigeonhole 
principle!



  

The Pigeonhole Principle



  

The pigeonhole principle is the following:

If m objects are placed into n bins,
where m > n, then some bin contains

at least two objects.

(We sketched a proof in Lecture #02)



  

Why This Matters

● The pigeonhole principle can be used to 
show results must be true because they are 
“too big to fail.”

● Given a large enough number of objects 
with a bounded number of properties, 
eventually at least two of them will share a 
property.

● The applications are interesting, surprising, 
and thought-provoking.



  

Using the Pigeonhole Principle

● To use the pigeonhole principle:
● Find the m objects to distribute.
● Find the n < m buckets into which to distribute 

them.
● Conclude by the pigeonhole principle that there 

must be two objects in some bucket.

● The details of how to proceeds from there 
are specific to the particular proof you're 
doing.



  

Theorem: Suppose that every point in the real plane 
is colored either red or blue.  Then for any distance
d > 0, there are two points exactly distance d from 
one another that are the same color.

Proof: Consider any equilateral triangle whose side 
lengths are d.  Put this triangle anywhere in the 
plane.  By the pigeonhole principle, because there 
are three vertices, two of the vertices must have the 
same color.  These vertices are at distance d from 
each other, as required. ■

A Surprising Application
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is at distance d from one 
another.  Since two must 
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same color at distance d!
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same color at distance d!
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Theorem: For any natural number n, there is a 
nonzero multiple of n whose digits are all 0s and 1s.
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Proof Idea

● For any natural number n ≥ 2 generate 
the numbers 1, 11, 111, … until n + 1 
numbers are generated.

● There are n possible remainders modulo 
n, so two of these numbers have the 
same remainder.

● Their difference is a multiple of n.
● Their difference consists of 1s and 0s.



  

Theorem: For any natural number n, there is a nonzero multiple of n 
whose digits are all 0s and 1s.
 

Proof: For any k ∈ ℕ in the range 0 ≤ k ≤ n, consider Sk defined as

Now, consider the remainders of the Sk's modulo n.  Since there are
n + 1 Sk's and n remainders modulo n, by the pigeonhole principle
there must be at least two Sk's that leave the same remainder modulo
n.  Let two of these Sk's be Sx and Sy, with x > y, and let the
remainder be r.

 

Since Sx ≡n r, there exists qx ∈ ℤ such that Sx = nqx + r.  Similarly,
since Sy ≡n r, there exists qy ∈ ℤ such that Sy = nqy + r.  Then
Sx – Sy = (nqx + r) – (nqy + r) = nqx – nqy = n(qx – qy).  Thus Sx – Sy

is a multiple of n.  Moreover, we have that

So Sx – Sy is a sum of distinct powers of ten, so its digits are zeros and
ones.  Since x > y, we know that x ≥ y + 1 and so the sum is nonzero.
Therefore Sx – Sy is a nonzero multiple of n consisting of 0s and 1s. ■
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The Limits of Data Compression



  

Pigeonholing Injective Functions

● Consider a function f : A → B for finite 
sets A and B.

● If |A| > |B|, then by the pigeonhole 
principle some element of B has at least 
two elements of A that map to it.

● Thus f cannot be injective.



  

Bitstrings

● A bitstring is a finite sequence of 0s and 
1s.

● Examples:
● 11011100
● 010101010101
● 0000
● ε (the empty string)

● There are 2n bitstrings of length n.



  

Data Compression

● Inside a computer, all data are represented as 
sequences of 0s and 1s (bitstrings)

● To transfer data (across a network, on DVDs, on a flash 
drive, etc.), it is advantageous to try to reduce the 
number of 0s and 1s before transferring it.

● Most real-world data can be compressed by exploiting 
redundancies.
● Text repeats common patterns (“the”, “and”, etc.)
● Bitmap images use similar colors throughout the image.

● Idea: Replace each bitstring with a shorter bitstring 
that contains all the original information.
● This is called lossless data compression.
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Lossless Data Compression

● In order to losslessly compress data, we need two 
functions:

● A compression function C, and
● A decompression function D.

● These functions must be inverses of one another: 
D(C(x)) = x.

● Otherwise, we can't uniquely encode or decode 
some bitstring.

● Therefore, C must be injective.

● Otherwise, C(x0) = y = C(x1) for some x0 and x1, and 
so we can't tell whether D(y) = x0 or D(y) = x1.



  

A Perfect Compression Function

● Ideally, the compressed version of a bitstring would 
always be shorter than the original bitstring.

● Question: Can we find a lossless compression 
algorithm that always compresses a string into a 
shorter string?

● To handle the issue of the empty string (which can't 
get any shorter), let's assume we only care about 
strings of length at least 10.



  

A Counting Argument

● Let �n be the set of bitstrings of length n, and �<n be 
the set of bitstrings of length less than n.

● How many bitstrings of length n are there?

● Answer: 2n

● How many bitstrings of length less than n are there?

● Answer: 20 + 21 + … + 2n – 1 = 2n – 1

● Using our earlier result, by the pigeonhole principle, 
there cannot be an injection from �n to �<n.

● Since a perfect compression function would have to be 
an injection from �n to �<n, there is no perfect 
compression function!



  

Why this Result is Interesting

● Our result says that no matter how hard we try, 
it is impossible to compress every string into a 
shorter string.

● No matter how clever you are, you cannot write 
a lossless compression algorithm that always 
makes strings shorter.

● In practice, only highly redundant data can be 
compressed.

● The fields of information theory and 
Kolmogorov complexity explore the limits of 
compression; if you're interested, go explore!



  

The Limits of Counterfeit Detection



  

The Counterfeit Coin Problem

● Given 3n coins, one of which weighs more 
than the rest, find that coin with at most 
n weighings on a balance.
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Modeling an Algorithm

● In order to reason about the maximum number of 
coins, we need to find some way to reason about all 
possible algorithms for finding the coin.

● Main assumption: The only operation we can 
perform on the coins is weighing them on the scale.
● We can't test their density, give them to the Secret 

Service, etc.

● We'll call such an algorithm a comparison-based 
algorithm, since the only way of distinguishing 
coins is through comparisons.



  

D vs E

E F D
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            D = E
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H I G
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            G = H

G > H        

A vs B

B C A
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            A = B

A > B        

ABC vs DEF

ABC < DEF                                                              
                      ABC = DEF

                                                               ABC > DEFEach internal node 
is a comparison 

node.

Each internal node 
is a comparison 

node.

Each leaf node is 
an answer node.

Each leaf node is 
an answer node.



  

An Algorithm for Six Coins
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F E
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An Algorithm for One Coin

A



  

Reasoning about Algorithms

● In this setup, every algorithm corresponds to 
a tree structure consisting of comparisons 
and answers.

● Each comparison node produces one of 
three outputs.

● Each answer node immediately ends the 
algorithm with the answer.

● Reasoning about these structures will tell us 
about the counterfeit coin problem.



  

Reasoning about Inputs

● To be precise, we need to reason about the 
inputs to our algorithm.

● An input is a collection of k coins, exactly one of 
which is heavier than the rest.
● It doesn't matter how much heavier it is; just that it 

weighs more than the rest.

● This means that there are exactly k possible 
inputs to the algorithm – one in which the first 
coin is counterfeit, one in which the second coin 
is counterfeit, etc.



  

A Critical Observation

● Suppose that we have an algorithm for finding 
which of k coins is counterfeit.

● There must be at least k answer nodes in the tree.
● Reasoning from the pigeonhole principle:

● Run the algorithm on all k possible inputs.
● Consider the set of counterfeit coins that arrive at 

each answer node in the tree.
● If there are more coins than answer nodes, there must 

be two different coins that arrive at the same answer 
node.

● The algorithm has to be wrong at least one of the two 
inputs.



  

How many answer nodes
can there be in the tree?
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Theorem: In a comparison-based algorithm that makes at most n 
weighings on any input, there are at most 3n answer nodes.
 

Proof: By induction on n.  As our base case, consider an algorithm
that makes zero comparisons.  Then the algorithm is a single
answer node.  Since 1 = 30, the claim holds for n = 0.

 

For the inductive hypothesis, assume that for any algorithm that
makes at most n weighings, there are at most 3n answer nodes.
Consider any algorithm that makes at most n + 1 weighings.  If
the first step of the algorithm is an answer, then the algorithm
is just a single answer node.  In this case, it has 1 ≤ 3n+1 answer
nodes, so the claim holds.

 

Otherwise, the first step of the algorithm is a comparison.  For
each of the three outcomes, the algorithm can then make up to
n more comparisons.  By the inductive hypothesis, this means
that in each of the subtrees corresponding to these outcomes,
there can be up to 3n answer nodes.  Consequently, the overall
algorithm can have at most 3(3n) = 3n+1 answer nodes,
completing the induction. ■



  

Theorem: Any comparison-based algorithm for finding which of k
coins is heavier must perform at least log3 k weighings on some
input.

 

Proof: By contradiction; assume there is a comparison-based
algorithm for this problem that makes strictly fewer than log3 k
comparisons on all inputs.  By our previous result, this means 

that the algorithm must have strictly fewer than 3log3  = k
answer nodes.

 

Now, consider the answer nodes arrived in when we run the
algorithm on all k possible inputs.  By the pigeonhole principle,
since there are k inputs and fewer than k answer nodes, at least
two inputs must arrive in the same answer node.  Since these
two inputs have different answers, this means that the
algorithm must be incorrect on at least one of these two inputs,
contradicting the fact that the algorithm finds which of the
coins is heavier.

 

We have reached a contradiction, so our assumption must have
been wrong.  Thus any comparison-based algorithm for finding
the heavier coin out of k coins must make at least log3 k
weighings. ■

3
log3 k



  

Thm: There is no comparison-based algorithm for
 finding which of 3n + k coins is  counterfeit in n
 weighings for any k > 0.

 

Proof: By our previous result, we need at least
  log3 (3

n + k) comparisons to determine which
  of 3n + k coins is heaviest.  If k > 0, then

log3 (3
n + k) > log3 3

n = n. 

  Thus we need strictly more than n weighings
  to find which of the coins is counterfeit. ■

Corollary: The comparison-based algorithm we
 developed in class is optimal.



  

What Just Happened?

● This is our first theorem about the difficulty of a 
specific problem!

● Our procedure was as follows:
● Build a mathematical model of computation for finding the 

counterfeit coin.
● Given the model, reason about the behavior of that model 

on various inputs.
● Write a proof that formalizes our reasoning about that 

behavior.
● We will build many more models like this one later in 

the quarter.



  

Suppose you have a set of coins.  There is
a counterfeit coin among them that weighs 

more than the rest of the coins.

If you have n weighings, what is the largest 
number of coins for which you can solve 

this problem?



  

Suppose you have a set of coins.  There
may be a counterfeit coin among them
(though there doesn't have to be).

If there is a counterfeit, it will weigh more 
than the rest of the coins.

If you have n weighings, what is the largest 
number of coins for which you can solve 

this problem?



  

The Possibly Counterfeit Coin Problem

● With n weighings, we have a strategy for finding which of 3n 
– 1 coins, if any, is heavier.

● If n = 0, then we can check 30 – 1 = 0 coins and determine 
they are all real.

● Otherwise:
● Split the coins into groups of size 3n – 1, 3n – 1, and 3n – 1 – 1.  Call 

them A, B, and C.
● Weigh A vs. B.
● If A or B is heavier than the other, one of the 3n – 1 coins in it is 

counterfeit.  We can find it in n – 1 weighings.
● Otherwise, nothing in A or B is counterfeit.  Recursively check the 

3n-1 – 1 coins using n – 1 weighings.



  

Is this solution optimal?



  

Using Our Model

● Let's use the same reasoning as before.
● How many different inputs are there if there are k 

coins?
● Answer: k + 1: one for each coin, plus one for “no coin is 

counterfeit.”

● How many answer nodes are in an algorithm that 
makes n comparisons?
● Answer: 3n

● Solving k + 1 = 3n, we get k = 3n – 1.
● Our algorithm has to be optimal!



  

Why All This Matters

● We've spent the last few weeks exploring 
proof techniques and defining mathematical 
structures.

● These techniques make it possible to reason 
about fundamental questions in computing.

● In about a week, we'll begin exploring more 
elaborate models of computation using 
similar techniques.



  

Next Time

● Mathematical Logic
● How do we start formalizing our intuitions 

about mathematical truth?
● How do we justify proofs by contradiction 

and contrapositive?
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