

The Pigeonhole Principle

Friday Four Square
Today at 4:15PM, Outside Gates

(Weather Permitting)

Announcements

● Problem Set 2 due right now.
● Problem Set 3 goes out.

● Checkpoint due Monday, October 15.
● Remainder due Friday, October 19.

● Play around with graphs, relations,
functions, cardinality, and the pigeonhole
principle!

The Pigeonhole Principle

The pigeonhole principle is the following:

If m objects are placed into n bins,
where m > n, then some bin contains

at least two objects.

(We sketched a proof in Lecture #02)

Why This Matters

● The pigeonhole principle can be used to
show results must be true because they are
“too big to fail.”

● Given a large enough number of objects
with a bounded number of properties,
eventually at least two of them will share a
property.

● The applications are interesting, surprising,
and thought-provoking.

Using the Pigeonhole Principle

● To use the pigeonhole principle:
● Find the m objects to distribute.
● Find the n < m buckets into which to distribute

them.
● Conclude by the pigeonhole principle that there

must be two objects in some bucket.

● The details of how to proceeds from there
are specific to the particular proof you're
doing.

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. By the pigeonhole principle, because there
are three vertices, two of the vertices must have the
same color. These vertices are at distance d from
each other, as required. ■

A Surprising Application

d

 d

d

Any pair of these points
is at distance d from one
another. Since two must
be the same color, there
is a pair of points of the
same color at distance d!

Any pair of these points
is at distance d from one
another. Since two must
be the same color, there
is a pair of points of the
same color at distance d!

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. By the pigeonhole principle, because there
are three vertices, two of the vertices must have the
same color. These vertices are at distance d from
each other, as required. ■

A Surprising Application

1

111

1111

11111

111111

1111111

11111111

111111111

1111111111
-1111111111

0
1
2
3
4
5
6
7
8

Theorem: For any natural number n, there is a
nonzero multiple of n whose digits are all 0s and 1s.

11

1111111111

1111111110

Proof Idea

● For any natural number n ≥ 2 generate
the numbers 1, 11, 111, … until n + 1
numbers are generated.

● There are n possible remainders modulo
n, so two of these numbers have the
same remainder.

● Their difference is a multiple of n.
● Their difference consists of 1s and 0s.

Theorem: For any natural number n, there is a nonzero multiple of n
whose digits are all 0s and 1s.

Proof: For any k ∈ ℕ in the range 0 ≤ k ≤ n, consider Sk defined as

Now, consider the remainders of the Sk's modulo n. Since there are
n + 1 Sk's and n remainders modulo n, by the pigeonhole principle
there must be at least two Sk's that leave the same remainder modulo
n. Let two of these Sk's be Sx and Sy, with x > y, and let the
remainder be r.

Since Sx ≡n r, there exists qx ∈ ℤ such that Sx = nqx + r. Similarly,
since Sy ≡n r, there exists qy ∈ ℤ such that Sy = nqy + r. Then
Sx – Sy = (nqx + r) – (nqy + r) = nqx – nqy = n(qx – qy). Thus Sx – Sy

is a multiple of n. Moreover, we have that

So Sx – Sy is a sum of distinct powers of ten, so its digits are zeros and
ones. Since x > y, we know that x ≥ y + 1 and so the sum is nonzero.
Therefore Sx – Sy is a nonzero multiple of n consisting of 0s and 1s. ■

S k=∑
i=0

k

10i

n(qx−q y)=S x−S y=∑
i=0

x

10i−∑
i=0

y

10i= ∑
i= y+ 1

x

10i

The Limits of Data Compression

Pigeonholing Injective Functions

● Consider a function f : A → B for finite
sets A and B.

● If |A| > |B|, then by the pigeonhole
principle some element of B has at least
two elements of A that map to it.

● Thus f cannot be injective.

Bitstrings

● A bitstring is a finite sequence of 0s and
1s.

● Examples:
● 11011100
● 010101010101
● 0000
● ε (the empty string)

● There are 2n bitstrings of length n.

Data Compression

● Inside a computer, all data are represented as
sequences of 0s and 1s (bitstrings)

● To transfer data (across a network, on DVDs, on a flash
drive, etc.), it is advantageous to try to reduce the
number of 0s and 1s before transferring it.

● Most real-world data can be compressed by exploiting
redundancies.
● Text repeats common patterns (“the”, “and”, etc.)
● Bitmap images use similar colors throughout the image.

● Idea: Replace each bitstring with a shorter bitstring
that contains all the original information.
● This is called lossless data compression.

101010101010101010101010101010

1111010

1111010

101010101010101010101010101010

 Compress

 Decompress

 Transmit

Lossless Data Compression

● In order to losslessly compress data, we need two
functions:

● A compression function C, and
● A decompression function D.

● These functions must be inverses of one another:
D(C(x)) = x.

● Otherwise, we can't uniquely encode or decode
some bitstring.

● Therefore, C must be injective.

● Otherwise, C(x0) = y = C(x1) for some x0 and x1, and
so we can't tell whether D(y) = x0 or D(y) = x1.

A Perfect Compression Function

● Ideally, the compressed version of a bitstring would
always be shorter than the original bitstring.

● Question: Can we find a lossless compression
algorithm that always compresses a string into a
shorter string?

● To handle the issue of the empty string (which can't
get any shorter), let's assume we only care about
strings of length at least 10.

A Counting Argument

● Let �n be the set of bitstrings of length n, and �<n be
the set of bitstrings of length less than n.

● How many bitstrings of length n are there?

● Answer: 2n

● How many bitstrings of length less than n are there?

● Answer: 20 + 21 + … + 2n – 1 = 2n – 1

● Using our earlier result, by the pigeonhole principle,
there cannot be an injection from �n to �<n.

● Since a perfect compression function would have to be
an injection from �n to �<n, there is no perfect
compression function!

Why this Result is Interesting

● Our result says that no matter how hard we try,
it is impossible to compress every string into a
shorter string.

● No matter how clever you are, you cannot write
a lossless compression algorithm that always
makes strings shorter.

● In practice, only highly redundant data can be
compressed.

● The fields of information theory and
Kolmogorov complexity explore the limits of
compression; if you're interested, go explore!

The Limits of Counterfeit Detection

The Counterfeit Coin Problem

● Given 3n coins, one of which weighs more
than the rest, find that coin with at most
n weighings on a balance.

11 44

77

22 55

88

33 66

99

Modeling an Algorithm

● In order to reason about the maximum number of
coins, we need to find some way to reason about all
possible algorithms for finding the coin.

● Main assumption: The only operation we can
perform on the coins is weighing them on the scale.
● We can't test their density, give them to the Secret

Service, etc.

● We'll call such an algorithm a comparison-based
algorithm, since the only way of distinguishing
coins is through comparisons.

D vs E

E F D

 D < E

 D = E

D > E

G vs H

H I G

 G < H

 G = H

G > H

A vs B

B C A

 A < B

 A = B

A > B

ABC vs DEF

ABC < DEF
 ABC = DEF

 ABC > DEFEach internal node
is a comparison

node.

Each internal node
is a comparison

node.

Each leaf node is
an answer node.

Each leaf node is
an answer node.

An Algorithm for Six Coins

A vs B

B A

 A < B

 A = B

 A > B

C vs D

D C

 C < D C > D

E vs F

F E

 E < F E > F

An Algorithm for One Coin

A

Reasoning about Algorithms

● In this setup, every algorithm corresponds to
a tree structure consisting of comparisons
and answers.

● Each comparison node produces one of
three outputs.

● Each answer node immediately ends the
algorithm with the answer.

● Reasoning about these structures will tell us
about the counterfeit coin problem.

Reasoning about Inputs

● To be precise, we need to reason about the
inputs to our algorithm.

● An input is a collection of k coins, exactly one of
which is heavier than the rest.
● It doesn't matter how much heavier it is; just that it

weighs more than the rest.

● This means that there are exactly k possible
inputs to the algorithm – one in which the first
coin is counterfeit, one in which the second coin
is counterfeit, etc.

A Critical Observation

● Suppose that we have an algorithm for finding
which of k coins is counterfeit.

● There must be at least k answer nodes in the tree.
● Reasoning from the pigeonhole principle:

● Run the algorithm on all k possible inputs.
● Consider the set of counterfeit coins that arrive at

each answer node in the tree.
● If there are more coins than answer nodes, there must

be two different coins that arrive at the same answer
node.

● The algorithm has to be wrong at least one of the two
inputs.

How many answer nodes
can there be in the tree?

D vs E

E F D

 D < E

 D = E

D > E

G vs H

H I G

 G < H

 G = H

G > H

A vs B

B C A

 A < B

 A = B

A > B

ABC vs DEF

ABC < DEF
 ABC = DEF

 ABC > DEF

Theorem: In a comparison-based algorithm that makes at most n
weighings on any input, there are at most 3n answer nodes.

Proof: By induction on n. As our base case, consider an algorithm
that makes zero comparisons. Then the algorithm is a single
answer node. Since 1 = 30, the claim holds for n = 0.

For the inductive hypothesis, assume that for any algorithm that
makes at most n weighings, there are at most 3n answer nodes.
Consider any algorithm that makes at most n + 1 weighings. If
the first step of the algorithm is an answer, then the algorithm
is just a single answer node. In this case, it has 1 ≤ 3n+1 answer
nodes, so the claim holds.

Otherwise, the first step of the algorithm is a comparison. For
each of the three outcomes, the algorithm can then make up to
n more comparisons. By the inductive hypothesis, this means
that in each of the subtrees corresponding to these outcomes,
there can be up to 3n answer nodes. Consequently, the overall
algorithm can have at most 3(3n) = 3n+1 answer nodes,
completing the induction. ■

Theorem: Any comparison-based algorithm for finding which of k
coins is heavier must perform at least log3 k weighings on some
input.

Proof: By contradiction; assume there is a comparison-based
algorithm for this problem that makes strictly fewer than log3 k
comparisons on all inputs. By our previous result, this means

that the algorithm must have strictly fewer than 3log3 = k
answer nodes.

Now, consider the answer nodes arrived in when we run the
algorithm on all k possible inputs. By the pigeonhole principle,
since there are k inputs and fewer than k answer nodes, at least
two inputs must arrive in the same answer node. Since these
two inputs have different answers, this means that the
algorithm must be incorrect on at least one of these two inputs,
contradicting the fact that the algorithm finds which of the
coins is heavier.

We have reached a contradiction, so our assumption must have
been wrong. Thus any comparison-based algorithm for finding
the heavier coin out of k coins must make at least log3 k
weighings. ■

3
log3 k

Thm: There is no comparison-based algorithm for
 finding which of 3n + k coins is counterfeit in n
 weighings for any k > 0.

Proof: By our previous result, we need at least
 log3 (3

n + k) comparisons to determine which
 of 3n + k coins is heaviest. If k > 0, then

log3 (3
n + k) > log3 3

n = n.

 Thus we need strictly more than n weighings
 to find which of the coins is counterfeit. ■

Corollary: The comparison-based algorithm we
 developed in class is optimal.

What Just Happened?

● This is our first theorem about the difficulty of a
specific problem!

● Our procedure was as follows:
● Build a mathematical model of computation for finding the

counterfeit coin.
● Given the model, reason about the behavior of that model

on various inputs.
● Write a proof that formalizes our reasoning about that

behavior.
● We will build many more models like this one later in

the quarter.

Suppose you have a set of coins. There is
a counterfeit coin among them that weighs

more than the rest of the coins.

If you have n weighings, what is the largest
number of coins for which you can solve

this problem?

Suppose you have a set of coins. There
may be a counterfeit coin among them
(though there doesn't have to be).

If there is a counterfeit, it will weigh more
than the rest of the coins.

If you have n weighings, what is the largest
number of coins for which you can solve

this problem?

The Possibly Counterfeit Coin Problem

● With n weighings, we have a strategy for finding which of 3n
– 1 coins, if any, is heavier.

● If n = 0, then we can check 30 – 1 = 0 coins and determine
they are all real.

● Otherwise:
● Split the coins into groups of size 3n – 1, 3n – 1, and 3n – 1 – 1. Call

them A, B, and C.
● Weigh A vs. B.
● If A or B is heavier than the other, one of the 3n – 1 coins in it is

counterfeit. We can find it in n – 1 weighings.
● Otherwise, nothing in A or B is counterfeit. Recursively check the

3n-1 – 1 coins using n – 1 weighings.

Is this solution optimal?

Using Our Model

● Let's use the same reasoning as before.
● How many different inputs are there if there are k

coins?
● Answer: k + 1: one for each coin, plus one for “no coin is

counterfeit.”

● How many answer nodes are in an algorithm that
makes n comparisons?
● Answer: 3n

● Solving k + 1 = 3n, we get k = 3n – 1.
● Our algorithm has to be optimal!

Why All This Matters

● We've spent the last few weeks exploring
proof techniques and defining mathematical
structures.

● These techniques make it possible to reason
about fundamental questions in computing.

● In about a week, we'll begin exploring more
elaborate models of computation using
similar techniques.

Next Time

● Mathematical Logic
● How do we start formalizing our intuitions

about mathematical truth?
● How do we justify proofs by contradiction

and contrapositive?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

