Cardinality and

The Nature of Infinity

Recap from Last Time

Functions

- A function f is a mapping such that every value in A is associated with a single value in B.
- For every $a \in A$, there exists some $b \in B$ with $f(a)=b$.
- If $f(a)=b_{0}$ and $f(a)=b_{1}$, then $b_{0}=b_{1}$.
- If f is a function from A to B, we call A the domain of f andl B the codomain of f.
- We denote that f is a function from A to B by writing

$$
f: A \rightarrow B
$$

Injective Functions

- A function $f: A \rightarrow B$ is called injective (or one-to-one) iff each element of the codomain has at most one element of the domain associated with it.
- A function with this property is called an injection.
- Formally:

$$
\text { If } f\left(x_{0}\right)=f\left(x_{1}\right) \text {, then } x_{0}=x_{1}
$$

- An intuition: injective functions label the objects from A using names from B.

Surjective Functions

- A function $f: A \rightarrow B$ is called surjective (or onto) iff each element of the codomain has at least one element of the domain associated with it.
- A function with this property is called a surjection.
- Formally:

For any $b \in B$, there exists at least one $a \in A$ such that $f(a)=b$.

- An intuition: surjective functions cover every element of B with at least one element of A.

Bijections

- A function that associates each element of the codomain with a unique element of the domain is called bijective.
- Such a function is a bijection.
- Formally, a bijection is a function that is both injective and surjective.
- A bijection is a one-to-one correspondence between two sets.

Comparing Cardinalities

- The relationships between set cardinalities are defined in terms of functions between those sets.
- $|S|=|T|$ is defined using bijections.
$|S|=|T|$ iff there is a bijection $f: S \rightarrow T$

The Nature of Infinity

Infinite Cardinalities

$$
\begin{array}{lllllllllll}
\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
& & & & & & & & & & \\
\mathbb{Z} & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \ldots
\end{array}
$$

Infinite Cardinalities

$$
\begin{array}{lllllllllll}
\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
& & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & & \\
& & & & & & & & & & \\
& \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \ldots
\end{array}
$$

Infinite Cardinalities

$$
\begin{array}{lllllllllll}
\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
& & & & & & & & & & \\
\mathbb{Z} & 0 & & 1 & & 2 & & 3 & & 4 & \ldots \\
& & & & & & & & & & \\
& \ldots & -3 & -2 & -1 & & & & &
\end{array}
$$

Infinite Cardinalities

Infinite Cardinalities

Infinite Cardinalities

Infinite Cardinalities

$$
f(x)=\{
$$

Infinite Cardinalities

Infinite Cardinalities

Infinite Cardinalities

Infinite Cardinalities

Theorem：$|\mathbb{Z}|=|\mathbb{N}|$ ．

．

．
\square
\qquad

\square
教
\qquad 2
 ． （ \square \square T \qquad
\qquad
\qquad
\qquad
\square

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1$

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1$

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1$

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.
Next, we prove f is injective.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.
Next, we prove f is injective. Suppose that $f(x)=f(y)$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative.

Case 2: x and y are negative.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$.

Case 2: x and y are negative.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$.

Case 2: x and y are negative.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.

Case 2: x and y are negative.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.

Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.

Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since $f(x)=f(y)$, we have $-2 x-1=-2 y-1$, so $x=y$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.

Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since

$$
f(x)=f(y), \text { we have }-2 x-1=-2 y-1, \text { so } x=y .
$$

Finally, we prove f is surjective.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.

Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since

$$
f(x)=f(y), \text { we have }-2 x-1=-2 y-1, \text { so } x=y .
$$

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since $f(x)=f(y)$, we have $-2 x-1=-2 y-1$, so $x=y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since

$$
f(x)=f(y), \text { we have }-2 x-1=-2 y-1, \text { so } x=y .
$$

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even.

Case 2: n is odd.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since

$$
f(x)=f(y), \text { we have }-2 x-1=-2 y-1, \text { so } x=y
$$

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer.

Case 2: n is odd.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since $f(x)=f(y)$, we have $-2 x-1=-2 y-1$, so $x=y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)$

Case 2: n is odd.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since $f(x)=f(y)$, we have $-2 x-1=-2 y-1$, so $x=y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)=n$.

Case 2: n is odd.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since $f(x)=f(y)$, we have $-2 x-1=-2 y-1$, so $x=y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)=n$.

Case 2: n is odd. Then $-(n+1) / 2$ is a negative integer.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since $f(x)=f(y)$, we have $-2 x-1=-2 y-1$, so $x=y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)=n$.

Case 2: n is odd. Then $-(n+1) / 2$ is a negative integer. Moreover, $f(-(n+1) / 2)=-2(-(n+1) / 2)-1$

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since $f(x)=f(y)$, we have $-2 x-1=-2 y-1$, so $x=y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)=n$.

Case 2: n is odd. Then $-(n+1) / 2$ is a negative integer. Moreover,

$$
f(-(n+1) / 2)=-2(-(n+1) / 2)-1=n+1-1
$$

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since $f(x)=f(y)$, we have $-2 x-1=-2 y-1$, so $x=y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)=n$.

Case 2: n is odd. Then $-(n+1) / 2$ is a negative integer. Moreover,

$$
f(-(n+1) / 2)=-2(-(n+1) / 2)-1=n+1-1=n \text {. }
$$

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since

$$
f(x)=f(y), \text { we have }-2 x-1=-2 y-1, \text { so } x=y
$$

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)=n$.

Case 2: n is odd. Then $-(n+1) / 2$ is a negative integer. Moreover,

$$
f(-(n+1) / 2)=-2(-(n+1) / 2)-1=n+1-1=n .
$$

Since f is injective and surjective, it is a bijection.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since

$$
f(x)=f(y), \text { we have }-2 x-1=-2 y-1, \text { so } x=y
$$

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)=n$.

Case 2: n is odd. Then $-(n+1) / 2$ is a negative integer. Moreover,

$$
f(-(n+1) / 2)=-2(-(n+1) / 2)-1=n+1-1=n .
$$

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}|=|\mathbb{N}|$.

Theorem: $|\mathbb{Z}|=|\mathbb{N}|$.
Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as follows:

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { otherwise }
\end{array}\right.
$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x)=2 x$. Since in this case x is nonnegative, $2 x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x<0$, so $f(x)=-2 x-1=2(-x)-1$. Since $x<0$, we have $-x>0$, so $-x \geq 1$. Then $f(x)=2(-x)-1 \geq 2-1=1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \rightarrow \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x)=f(y)$. We will prove that $x=y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x)=f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x)=2 x$ and $f(y)=2 y$. Since $f(x)=f(y)$, we have $2 x=2 y$. Thus $x=y$.
Case 2: x and y are negative. Then $f(x)=-2 x-1$ and $f(y)=-2 y-1$. Since

$$
f(x)=f(y), \text { we have }-2 x-1=-2 y-1, \text { so } x=y
$$

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x)=n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2)=2(n / 2)=n$.

Case 2: n is odd. Then $-(n+1) / 2$ is a negative integer. Moreover,

$$
f(-(n+1) / 2)=-2(-(n+1) / 2)-1=n+1-1=n .
$$

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}|=|\mathbb{N}|$.

Why This Matters

- Note the thought process from this proof:
- Start by drawing a picture to get an intuition.
- Convert the picture into a mathematical object (here, a function).
- Prove the object has the desired properties.
- This technique is at the heart of mathematics.
- We will use it extensively throughout the rest of this lecture.

Cantor's Theorem Revisited

Comparing Cardinalities

- We define $|S| \leq|T|$ as follows:
$|S| \leq|T|$ iff there is an injection $\boldsymbol{f}: S \rightarrow T$

Comparing Cardinalities

- Formally, we define < on cardinalities as

$$
|S|<|T| \text { iff }|S| \leq|T| \text { and }|S| \neq|T|
$$

- In other words:
- There is an injection from S to T.
- There is no bijection between S and T.

Cantor's Theorem

- Cantor's Theorem states that

$$
\text { For every set } S,|S|<|\wp(S)|
$$

- This is how we concluded that there are more problems to solve than programs to solve them.
- We informally sketched a proof of this in the first lecture.
- Let's now formally prove Cantor's Theorem.

Lemma: For any set $S,|S| \leq|\wp(S)|$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in$ S. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in$ S. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in$ S. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_{0} and x_{1} such that $f\left(x_{0}\right)=f\left(x_{1}\right)$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in$ S. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_{0} and x_{1} such that $f\left(x_{0}\right)=f\left(x_{1}\right)$. We prove that $x_{0}=x_{1}$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in$ S. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_{0} and x_{1} such that $f\left(x_{0}\right)=f\left(x_{1}\right)$. We prove that $x_{0}=x_{1}$. To see this, note that if $f\left(x_{0}\right)=f\left(x_{1}\right)$, then

$$
\left\{x_{0}\right\}=\left\{x_{1}\right\} .
$$

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in$ S. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_{0} and x_{1} such that $f\left(x_{0}\right)=f\left(x_{1}\right)$. We prove that $x_{0}=x_{1}$. To see this, note that if $f\left(x_{0}\right)=f\left(x_{1}\right)$, then $\left\{x_{0}\right\}=\left\{x_{1}\right\}$. Since two sets are equal iff their elements are equal, this means that $x_{0}=x_{1}$ as required.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_{0} and x_{1} such that $f\left(x_{0}\right)=f\left(x_{1}\right)$. We prove that $x_{0}=x_{1}$. To see this, note that if $f\left(x_{0}\right)=f\left(x_{1}\right)$, then $\left\{x_{0}\right\}=\left\{x_{1}\right\}$. Since two sets are equal iff their elements are equal, this means that $x_{0}=x_{1}$ as required. Thus f is an injection from S to $\wp(S)$, so $|S| \leq|\wp(S)|$.

Lemma: For any set $S,|S| \leq|\wp(S)|$.
Proof: Consider any set S. We show that there is an injection $f: S \rightarrow \wp(S)$. Define $f(x)=\{x\}$.

To see that $f(x)$ is a legal function from S to $\wp(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \wp(S)$. This means that $f(x) \in \wp(S)$, so f is a valid function from S to $\wp(S)$.

To see that f is injective, consider any x_{0} and x_{1} such that $f\left(x_{0}\right)=f\left(x_{1}\right)$. We prove that $x_{0}=x_{1}$. To see this, note that if $f\left(x_{0}\right)=f\left(x_{1}\right)$, then $\left\{x_{0}\right\}=\left\{x_{1}\right\}$. Since two sets are equal iff their elements are equal, this means that $x_{0}=x_{1}$ as required. Thus f is an injection from S to $\wp(S)$, so $|S| \leq|\wp(S)|$.

The Key Step

- We now need to show that

For any set $S,|\boldsymbol{S}| \neq|\wp(S)|$

- By definition, $|S|=|\wp(S)|$ iff there exists a bijection $f: S \rightarrow \wp(S)$.
- This means that
$|S| \neq|\wp(S)|$ iff there is no bijection $f: S \rightarrow \wp(S)$
- Prove this by contradiction:
- Assume that there is a bijection $f: S \rightarrow \wp(S)$.
- Derive a contradiction by showing that f is not a bijection.

$$
\begin{gathered}
\mathrm{x}_{0} \\
\mathrm{X}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3} \\
\mathrm{X}_{4} \\
\mathrm{X}_{5} \\
\ldots
\end{gathered}
$$

$$
\begin{aligned}
& x_{0} \hookrightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots\right\} \\
& x_{1} \hookrightarrow\left\{x_{0}, x_{3}, x_{4}, \ldots\right\} \\
& x_{2} \longleftrightarrow\left\{x_{4}, \ldots\right\} \\
& x_{3} \longleftrightarrow\left\{x_{1}, x_{4}, \ldots\right\} \\
& x_{4} \longleftrightarrow\left\{x_{0}, x_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
\mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5}
\end{array} \\
& x_{0} \longleftrightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots\right\} \\
& \mathrm{x}_{1} \leftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& X_{3} \longleftrightarrow\left\{x_{1}, x_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|llllll}
\mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5}
\end{array} \\
& x_{0} \longleftrightarrow\left\{x_{0}, \quad x_{2}, \quad x_{4}, \quad \ldots\right\} \\
& \mathrm{x}_{1} \leftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{2} \longleftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{0} \longleftrightarrow \begin{array}{|c|c|c|c|c|c|c|}
\hline \mathbf{x}_{0} & \mathbf{x}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5} & \ldots \\
\hline \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline
\end{array} \\
& \mathrm{x}_{1} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{x}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{X}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{0} \longleftrightarrow \begin{array}{|c|c|c|c|c|c|c|}
\hline \mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \ldots \\
\hline \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline
\end{array} \\
& \mathrm{X}_{1} \hookrightarrow\left\{\mathrm{x}_{0}, \quad \mathrm{x}_{3}, \quad \mathrm{x}_{4}, \quad \ldots\right\} \\
& \mathrm{x}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{0} \longleftrightarrow \begin{array}{|c|c|c|c|c|c|c|}
\hline \mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{x}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5} & \ldots \\
\mathbf{X}_{1} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} \\
\hline \mathbf{Y} & \mathbf{N} & \mathbf{N} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \cdots \\
\hline
\end{array} \\
& \mathrm{x}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{0} \hookrightarrow \begin{array}{|c|c|c|c|c|c|c|}
\hline \mathbf{x}_{0} & \mathbf{x}_{1} & \mathbf{x}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5} & \ldots \\
\mathbf{x}_{1} \hookrightarrow \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline \mathbf{Y} & \mathbf{N} & \mathbf{N} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline
\end{array} \\
& \mathrm{X}_{2} \longleftrightarrow\left\{\quad \mathrm{x}_{4}, \quad \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{X}_{1}, \mathrm{X}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|c|c|c|c|c|c|c|}
\hline \mathrm{x}_{0} & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \ldots \\
\mathrm{x}_{0} & \bullet \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\mathrm{x}_{1} & \bullet \mathbf{Y} & \mathbf{N} & \mathbf{N} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \ldots \\
\mathrm{x}_{2} & \bullet \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline
\end{array} \\
& x_{3} \longleftrightarrow\left\{x_{1}, \quad x_{4}, \quad \ldots\right\} \\
& \mathrm{x}_{4} \leftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	
X_{0} ¢	Y	N	Y	N	Y	N	..
$\mathrm{x}_{1} \longrightarrow$	Y	N	N	Y	Y	N	..
$\mathrm{x}_{2} \longleftrightarrow$	N	N	N	N	Y	N	..
X_{3}	N	Y	N	N	Y	N	
$\mathrm{X}_{4} \longrightarrow$		N	N	N	N	Y	
$\mathrm{X}_{5} \longrightarrow$		Y	Y	Y	Y	Y	

	X_{0}	x_{1}	X_{2}	X_{3}	X_{4}	X_{5}	..
x_{0} 」	Y	N	Y	N	Y	N	..
x_{1} -	Y	N	N	Y	Y	N	..
$\mathrm{X}_{2} \longleftrightarrow$	N	N	N	N	Y	N	
x_{3}	N	Y	N	N	Y	N	
$\mathrm{X}_{4} \longleftrightarrow$	Y	N	N	N	N	Y	
X_{5}	Y	Y	Y	Y	Y	Y	

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots	\cdots						

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots	\cdots						

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots	\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots
	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Flip all Y 's to N 's and viceversa to get a new set
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	Y	N	N	N	N	Y	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Flip all y 's to N's and viceversa to get a new set
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	..	

	x_{0}	x_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Flip all y's to N's and vice-
X_{4}	Y	N	N	N	N	Y	...	versa to get a
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	...	$\begin{aligned} & . . \\ & \mathbf{x}_{1} \end{aligned}$		$\begin{aligned} & \cdots \\ & \mathbf{x}_{3} \end{aligned}$...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Flip all y 's to N's and viceversa to get a new set
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	..	

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots							
	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	x_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	X_{0}	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	\ldots	
X_{0}	Y	N	Y	N	Y	N	...	
X_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	-	
X_{3}	\mathbf{N}	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	-..	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	-••	
...	-	-••	...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	x_{3}	x_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
\cdots	-•	\ldots	
	N	Y	Y	Y	Y	N		

Formalizing the Diagonal Argument

- Proof by contradiction; assume there is a bijection $f: S \rightarrow \wp(S)$.
- The diagonal argument shows that f cannot be a bijection:
- Construct the table given the bijection f.
- Construct the complemented diagonal.
- Show that the complemented diagonal cannot appear anywhere in the table.
- Conclude, therefore, that f is not a bijection.

Formalizing the Diagonal Argument

Proof by contradiction; assume there is a
bijection $f: S \rightarrow \wp(S)$.
The diagonal argument shows that f cannot be a
bijection:

- Construct the table given the bijection f.
- Construct the complemented diagonal.
- Show that the complemented diagonal cannot appear anywhere in the table.
Conclude, therefore, that f is not a bijection.

Formalizing the Diagonal Argument

Proof by contradiction; assume there is a bijection $f: S \rightarrow \wp(S)$.

The diagonal argument shows that f cannot be a

- Construct the table given the bijection f.
- Construct the complemented diagonal.
- Show that the complemented diagonal cannot appear anywhere in the table.
- For finite sets this is fine, but what if the set is infinitely large?

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\ldots
\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	\ldots
	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots

	x_{0}	X_{1}	x_{2}	x_{3}	X_{4}	X_{5}	\ldots	$f\left(x_{0}\right)=\left\{x_{0}, x_{2}, x_{4}, \ldots\right\}$
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	$f\left(x_{1}\right)=\left\{x_{0}, x_{3}, x_{4}, \ldots\right\}$
X_{2}	N	N	N	N	Y	N	...	$f\left(x_{2}\right)=\left\{x_{4}, \ldots\right\}$
X_{3}	N	Y	N	Y	Y	N	...	$f\left(x_{3}\right)=\left\{x_{1}, x_{3}, x_{4}, \ldots\right\}$
X_{4}	Y	N	N	N	N	Y	...	$f\left(x_{4}\right)=\left\{x_{1}, x_{5}, \ldots\right\}$
X_{5}	N	Y	N	N	Y	Y	...	$f\left(x_{5}\right)=\left\{x_{1}, x_{4}, x_{5}, \ldots\right\}$
...	
	N	Y	Y	N	Y	N	...	

	x_{0}	x_{1}	X_{2}	X_{3}	X_{4}	X_{5}	\ldots	$f\left(x_{0}\right)=\left\{x_{0}, x_{2}, x_{4}, \ldots\right\}$
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	$f\left(x_{1}\right)=\left\{x_{0}, x_{3}, x_{4}, \ldots\right\}$
x_{2}	N	N	N	N	Y	N	...	$f\left(x_{2}\right)=\left\{x_{4}, \ldots\right\}$
X_{3}	N	Y	N	Y	Y	N	...	$f\left(x_{3}\right)=\left\{x_{1}, x_{3}, x_{4}, \ldots\right\}$
x_{4}	Y	N	N	N	N	Y	...	$f\left(x_{4}\right)=\left\{x_{1}, x_{5}, \ldots\right\}$
x_{5}	N	Y	N	N	Y	Y	...	$f\left(x_{5}\right)=\left\{x_{1}, x_{4}, x_{5}, \ldots\right\}$
...	
	N	Y	Y	N	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
X_{0}	Y	N	Y	N	Y	N	...	$f\left(x_{0}\right)=\left\{x_{0}, x_{2}, x_{4}, \ldots\right\}$
x_{1}	Y	N	N	Y	Y	N	...	$f\left(x_{1}\right)=\left\{x_{0}, x_{3}, x_{4}, \ldots\right\}$
x_{2}	N	N	N	N	Y	N	...	$f\left(x_{2}\right)=\left\{x_{4}, \ldots\right\}$
X_{3}	N	Y	N	Y	Y	N	...	$f\left(x_{3}\right)=\left\{x_{1}, x_{3}, x_{4}, \ldots\right\}$
X_{4}	Y	N	N	N	N	Y	...	$f\left(x_{4}\right)=\left\{x_{1}, x_{5}, \ldots\right\}$
X_{5}	N	Y	N	N	Y	Y	...	$f\left(\boldsymbol{x}_{5}\right)=\left\{x_{1}, x_{4}, \boldsymbol{x}_{5}, \ldots\right\}$
...	\ldots	
	N	Y	Y	N	Y	N	...	

	x_{0}	x_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	$f\left(x_{0}\right)=\left\{x_{0}, x_{2}, x_{4}, \ldots\right\}$
X_{0}	Y	N	Y	N	Y	N	...	
X_{1}	Y	N	N	Y	Y	N	...	$f\left(x_{1}\right)=\left\{x_{0}, x_{3}, x_{4}, \ldots\right\}$
x_{2}	N	N	N	N	Y	N	...	$f\left(x_{2}\right)=\left\{x_{4}, \ldots\right\}$
X_{3}	N	Y	N	Y	Y	N	...	$f\left(x_{3}\right)=\left\{x_{1}, x_{3}, x_{4}, \ldots\right.$
X_{4}	Y	N	N	N	N	Y	...	$f\left(x_{4}\right)=\left\{x_{1}, x_{5}, \ldots\right\}$
X_{5}	N	Y	N	N	Y	Y	...	$f\left(x_{5}\right)=\left\{x_{1}, x_{4}, x_{5}, \ldots\right\}$
	
	N	Y	Y	N	Y	N	...	

	x_{0}	x_{1}	X_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	$f\left(x_{0}\right)=\left\{x_{0}, x_{2}, x_{4}, \ldots\right\}$
X_{1}	Y	N	N	Y	Y	N	...	$f\left(x_{1}\right)=\left\{x_{0}, x_{3}, x_{4}, \ldots\right\}$
X_{2}	N	N	N	N	Y	N	...	$f\left(x_{2}\right)=\left\{x_{4}, \ldots\right\}$
X_{3}	N	Y	N	Y	Y	N	...	$f\left(x_{3}\right)=\left\{x_{1}, x_{3}, x_{4}, \ldots\right\}$
X_{4}	Y	N	N	N	N	Y	...	$f\left(x_{4}\right)=\left\{x_{1}, x_{5}, \ldots\right\}$
X_{5}	N	Y	N	N	Y	Y	...	$f\left(x_{5}\right)=\left\{x_{1}, x_{4}, x_{5}, \ldots\right\}$
...	
	N	Y	Y	N	Y	N	...	

The diagonal set D is the set

$$
D=\{x \in S \mid x \notin f(x)\}
$$

There is no longer a dependence on the existence of the two-dimensional table.

Lemma: For any set $S,|S| \neq|\wp(S)|$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$.

Case 2: y $\notin f(y)$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$.

Case 2: $y \notin f(y)$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y)=D$, we have $y \in D$.

Case 2: $y \notin f(y)$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y)=D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y)=D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y)=D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y)=D$, we have $y \notin D$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y)=D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y)=D$, we have $y \notin D$.
We have reached a contradiction.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y)=D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y)=D$, we have $y \notin D$.
We have reached a contradiction.
In either case we reach a contradiction, so our assumption must have been wrong.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y)=D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y)=D$, we have $y \notin D$.
We have reached a contradiction.
In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set S, we have that $|S| \neq|\wp(S)|$.

Lemma: For any set $S,|S| \neq|\wp(S)|$.
Proof: By contradiction; assume that there exists a set S such that $|S|=|\wp(S)|$. This means that there exists a bijection $f: S \rightarrow \wp(S)$. Consider the set $D=\{x \in S \mid x \notin f(x)\}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y)=D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y)=D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y)=D$, we have $y \notin D$.
We have reached a contradiction.
In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set S, we have that $|S| \neq|\wp(S)|$.

Theorem (Cantor's Theorem): For any set S, we have $|S|<|\wp(S)|$.

Proof: Consider any set S. By our first lemma, we have that $|S| \leq|\wp(S)|$. By our second lemma, we have that $|S| \neq|\wp(S)|$. Thus $|S|<|\wp(S)|$. \square

Why All This Matters

- The intuition behind a result is often more important than the result itself.
- Given the intuition, you can usually reconstruct the proof.
- Given just the proof, it is almost impossible to reconstruct the intuition.
- Think about compilation - you can more easily go from a high-level language to machine code than the other way around.

Cantor's Other Diagonal Argument

What is $|\mathbb{R}|$?

Theorem: $|\mathbb{N}|<|\mathbb{R}|$.

Sketch of the Proof

- To prove that $|\mathbb{N}|<|\mathbb{R}|$, we will use a modification of the proof of Cantor's theorem.
- First, we will directly prove that $|\mathbb{N}| \leq|\mathbb{R}|$.
- Second, we will use a proof by diagonalization to show that $|\mathbb{N}| \neq|\mathbb{R}|$.

Theorem: $|\mathbb{N}| \leq|\mathbb{R}|$.

Theorem: $|\mathbb{N}| \leq|\mathbb{R}|$.
Proof: We will exhibit an injection $f: \mathbb{N} \rightarrow \mathbb{R}$. Thus by definition, $|\mathbb{N}| \leq|\mathbb{R}|$.

Theorem: $|\mathbb{N}| \leq|\mathbb{R}|$.
Proof: We will exhibit an injection $f: \mathbb{N} \rightarrow \mathbb{R}$. Thus by definition, $|\mathbb{N}| \leq|\mathbb{R}|$.

Consider the function $f(n)=n$. Since all natural numbers are real numbers, this is a valid function from \mathbb{N} to \mathbb{R}. Moreover, it is injective. To see this, consider any $n_{0}, n_{1} \in \mathbb{N}$ such that $f\left(n_{0}\right)=f\left(n_{1}\right)$. We will prove that $n_{0}=n_{1}$. To see this, note that
$n_{0}=f\left(n_{0}\right)=f\left(n_{1}\right)=n_{1}$. Thus $n_{0}=n_{1}$, as required, so f is injective.

$|\mathbb{N}| \neq|\mathbb{R}|$

- Now, we need to show that $|\mathbb{N}| \neq|\mathbb{R}|$.
- To do this, we will use a proof by diagonalization similar to the one for Cantor's Theorem.
- Assume there is a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.
- Construct a two-dimensional table from f.
- Construct a "diagonal number" from the table.
- Show the diagonal number is not in the table.
- Conclude f is not a bijection.
$0 \longleftrightarrow 8.6 \quad 7 \quad 5 \quad 3 \quad 1 \quad \ldots$ $1 \longleftrightarrow 3.14159 \ldots$
$2 \longleftrightarrow 0.12235 \quad \ldots$ $3 \longleftrightarrow-1.0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \ldots$ $4 \longleftrightarrow 2.71828 \ldots$ $5 \longleftrightarrow 1.61803 \ldots$

$d_{0} d_{1} d_{2} d_{3} d_{4} d_{5} \ldots$

$0 \longleftrightarrow 8.6 \quad 7 \quad 5 \quad 3 \quad 0$ $1 \longleftrightarrow 3.14159$
$2 \longleftrightarrow 0.123 \quad 5 \quad 8 \ldots$
$3 \longleftrightarrow-1.0 \quad 0 \quad 0 \quad 0 \quad 0$
$4 \longleftrightarrow 2.71828 \ldots$
$5 \longleftrightarrow 1.61803 \ldots$

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	\ldots
0	8.	6	7	5	3	0	\ldots
1	3.	1	4	1	5	9	\ldots
2	0.	1	2	3	5	8	\ldots
3	-1.	0	0	0	0	0	\ldots
4	2.	7	1	8	2	8	\ldots
5	1.	6	1	8	0	3	\ldots
\ldots							

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	\ldots
0	8.	6	7	5	3	0	\ldots
1	3.	1	4	1	5	9	\ldots
2	0.	1	2	3	5	8	\ldots
3	-1.	0	0	0	0	0	\ldots
4	2.	7	1	8	2	8	\ldots
5	1.	6	1	8	0	3	\ldots
\ldots							

| | d_{0} | d_{1} | d_{2} | d_{3} | d_{4} | d_{5} | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 8. | 6 | 7 | 5 | 3 | 0 | \ldots |
| 1 | 3. | 1 | 4 | 1 | 5 | 9 | \ldots |
| 2 | 0. | 1 | 2 | 3 | 5 | 8 | \ldots |
| 3 | -1. | 0 | 0 | 0 | 0 | 0 | \ldots |
| 4 | 2. | 7 | 1 | 8 | 2 | 8 | \ldots |
| 5 | 1. | 6 | 1 | 8 | 0 | 3 | \ldots |
| \ldots |

| | d_{0} | d_{1} | d_{2} | d_{3} | d_{4} | d_{5} | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 8. | 6 | 7 | 5 | 3 | 0 | \ldots |
| 1 | 3. | 1 | 4 | 1 | 5 | 9 | \ldots |
| 2 | 0. | 1 | 2 | 3 | 5 | 8 | \ldots |
| 3 | -1. | 0 | 0 | 0 | 0 | 0 | \ldots |
| 4 | 2. | 7 | 1 | 8 | 2 | 8 | \ldots |
| 5 | 1. | 6 | 1 | 8 | 0 | 3 | \ldots |
| \ldots |

$$
\text { 8. } 1 \begin{array}{llllll}
1 & 2 & 0 & 2 & 3
\end{array}
$$

$d_{0} d_{1} d_{2} d_{3} d_{4} d_{5} \ldots$								
0	8.	6	7	5	3	0	...	
1	3.	1	4	1	5	9	\ldots	
2	0.	1	2	3	5	8	...	
3	-1.	0	0	0	0	0	...	Set all nonzero
4	2.	7	1	8	2	8	..	values to 0 and
5	1.	6	1	8	0	3		
..		

| | d_{0} | d_{1} | d_{2} | d_{3} | d_{4} | d_{5} | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 8. | 6 | 7 | 5 | 3 | 0 | \ldots |
| 1 | 3. | 1 | 4 | 1 | 5 | 9 | \ldots |
| 2 | 0. | 1 | 2 | 3 | 5 | 8 | \ldots |
| 3 | -1. | 0 | 0 | 0 | 0 | 0 | \ldots |
| 4 | 2. | 7 | 1 | 8 | 2 | 8 | \ldots |
| 5 | 1. | 6 | 1 | 8 | 0 | 3 | \ldots |
| \ldots |

0. $0 \begin{array}{lllll}0 & 1 & 0 & 0\end{array}$

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}		
0	8.	6	7	5	3	0	...	
1	3.	1	4	1	5	9	...	
2	0.	1	2	3	5	8	...	
3	-1.	0	0	0	0	0	...	Which natural number is paired with this real number?
4	2.	7	1	8	2	8	...	
5	1.	6	1	8	0	3	...	
\ldots		

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	..		
0	8.	6	7	5	3	0	...		
1	3.	1	4	1	5	9	...		
2	0.	1	2	3	5	8	...		
3	-1.	0	0	0	0	0	\ldots	Which natural number is paired with this real number?	
4	2.	7	1	8	2	8	\ldots		
5	1.	6	1	8	0	3	...		
\ldots	0. 0000100								

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}		
0	8.	6	7	5	3	0	...	
1	3.	1	4	1	5	9	\ldots	
2	0.	1	2	3	5	8	\ldots	
3	-1.	0	0	0	0	0	...	Which natural number is paired with this real number?
4	2.	7	1	8	2	8	...	
5	1.	6	1	8	0	3	...	
\ldots	\ldots	

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	..	
0	8.	6	7	5	3	0	...	
1	3.	1	4	1	5	9	...	
2	0.	1	2	3	5	8	...	
3	-1.	0	0	0	0	0	...	Which natural number is paired with this real number?
4	2.	7	1	8	2	8	...	
5	1.	6	1	8	0	3	...	
\ldots	
	0. 00							

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}		
0	8.	6	7	5	3	0	\ldots	
1	3.	1	4	1	5	9	...	
2	0.	1	2	3	5	8	...	
3	-1.	0	0	0	0	0	...	Which natural number is paired with this real number?
4	2.	7	1	8	2	8	...	
5	1.	6	1	8	0	3	...	
\ldots	\cdots	\cdots	

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}		
0	8.	6	7	5	3	0	\ldots	
1	3.	1	4	1	5	9	\ldots	
2	0.	1	2	3	5	8	\ldots	
3	-1.	0	0	0	0	0	...	Which natural number is paired with this real number?
4	2.	7	1	8	2	8	...	
5	1.	6	1	8	0	3	...	
\ldots	\ldots	

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	..	
0	8.	6	7	5	3	0	...	
1	3.	1	4	1	5	9	\ldots	
2	0.	1	2	3	5	8	...	
3	-1.	0	0	0	0	0	\ldots	Which natural number is paired with this real number?
4	2.	7	1	8	2	8	...	
5	1.	6	1	8	0	3	...	
...	\ldots		

	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	..	
0	8.	6	7	5	3	0	\ldots	
1	3.	1	4	1	5	9	\ldots	
2	0.	1	2	3	5	8	...	
3	-1.	0	0	0	0	0	...	Which natural number is paired with this real number?
4	2.	7	1	8	2	8	...	
5	1.	6	1	8	0	3	...	
\ldots		

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$. So consider $f(n)_{n}$ and d_{n}.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$. So consider $f(n)_{n}$ and d_{n}. We consider two cases:

Case 1: $f(n)_{n}=0$.
Case 2: $f(n)_{n} \neq 0$.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$. So consider $f(n)_{n}$ and d_{n}. We consider two cases:

Case 1: $f(n)_{n}=0$. Then by construction $d_{n}=1$, meaning that $f(n) \neq d$.
Case 2: $f(n)_{n} \neq 0$.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$. So consider $f(n)_{n}$ and d_{n}. We consider two cases:

Case 1: $f(n)_{n}=0$. Then by construction $d_{n}=1$, meaning that $f(n) \neq d$.
Case 2: $f(n)_{n} \neq 0$. Then by construction $d_{n}=0$, meaning that $f(n) \neq d$.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$. So consider $f(n)_{n}$ and d_{n}. We consider two cases:

Case 1: $f(n)_{n}=0$. Then by construction $d_{n}=1$, meaning that $f(n) \neq d$.
Case 2: $f(n)_{n} \neq 0$. Then by construction $d_{n}=0$, meaning that $f(n) \neq d$.
In either case, $f(n) \neq d$. This contradicts the fact that $f(n)=d$.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$. So consider $f(n)_{n}$ and d_{n}. We consider two cases:

Case 1: $f(n)_{n}=0$. Then by construction $d_{n}=1$, meaning that $f(n) \neq d$.
Case 2: $f(n)_{n} \neq 0$. Then by construction $d_{n}=0$, meaning that $f(n) \neq d$.
In either case, $f(n) \neq d$. This contradicts the fact that $f(n)=d$. We have reached a contradiction, so our assumption must have been wrong.

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$. So consider $f(n)_{n}$ and d_{n}. We consider two cases:

Case 1: $f(n)_{n}=0$. Then by construction $d_{n}=1$, meaning that $f(n) \neq d$.
Case 2: $f(n)_{n} \neq 0$. Then by construction $d_{n}=0$, meaning that $f(n) \neq d$.
In either case, $f(n) \neq d$. This contradicts the fact that $f(n)=d$. We have reached a contradiction, so our assumption must have been wrong. Thus $|\mathbb{N}| \neq|\mathbb{R}|$

Theorem: $|\mathbb{N}| \neq|\mathbb{R}|$.
Proof: By contradiction; suppose that $|\mathbb{N}|=|\mathbb{R}|$. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$.

We introduce some new notation. For a real number r, let r_{0} be the integer part of r, and let r_{n} for $n \in \mathbb{N}, n>0$, be the nth digit in the decimal representation of r. Now, define the real number d as follows:

$$
d_{n}= \begin{cases}1 & \text { if } f(n)_{n}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Since $d \in \mathbb{R}$, there must be some $n \in \mathbb{N}$ such that $f(n)=d$. So consider $f(n)_{n}$ and d_{n}. We consider two cases:

Case 1: $f(n)_{n}=0$. Then by construction $d_{n}=1$, meaning that $f(n) \neq d$.
Case 2: $f(n)_{n} \neq 0$. Then by construction $d_{n}=0$, meaning that $f(n) \neq d$.
In either case, $f(n) \neq d$. This contradicts the fact that $f(n)=d$. We have reached a contradiction, so our assumption must have been wrong. Thus $|\mathbb{N}| \neq|\mathbb{R}| ■$

The Power of Diagonalization

- A large number of fundamental results in computability and complexity theory are based on diagonal arguments.
- We will see at least three of them in the remainder of the quarter.

An Interesting Historical Aside

- The diagonalization proof that $|\mathbb{N}| \neq|\mathbb{R}|$ was Cantor's original diagonal argument; he proved Cantor's theorem later on.
- However, this was not the first proof that $|\mathbb{N}| \neq|\mathbb{R}|$. Cantor had a different proof of this result based on infinite sequences.
- Come talk to me after class if you want to see the original proof; it's absolutely brilliant!

Cantor's Other Other Diagonal Argument

(This one is different!)

What is $\left|\mathbb{N}^{2}\right|$?

	0	1	2	3	4	\ldots
0	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	\ldots
1	$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	\ldots
2	$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	\ldots
3	$(3,0)$	$(3,1)$	$(3 / 2)$	$(3,3)$	$(3,4)$	\ldots
4	$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	\ldots
\ldots		\ldots	\ldots	\ldots	\ldots	\ldots

```
    Diagonal 0
    f(0, 0) = 0
    Diagonal 1
f(0, 1) = 1
f(1, 0) = 2
    Diagonal 2
f(0, 2) = 3
f(1, 1) = 4
f(2, 0) = 5
    Diagonal 3
f(0, 3) = 6
f(1, 2) = 7
f(2, 1) = 8
f(3, 0) = 9
    Diagonal 4
f(0, 4) = 10
f(1, 3) = 11
f(2, 2) = 12
f(3, 1) = 13
f(4, 0) = 14
```

The number of elements on all previous diagonals
$f(a, b)=$
The index of the current pair on its diagonal

$$
\begin{aligned}
& \text { Diagonal } 0 \\
& f(0,0)=0 \\
& \text { Diagonal } 1 \\
& f(0,1)=1 \\
& f(1,0)=2 \\
& \text { Diagonal } 2 \\
& f(0,2)=3 \\
& f(1,1)=4 \\
& f(2,0)=5 \\
& \text { Diagonal } 3 \\
& f(0,3)=6 \\
& f(1,2)=7 \\
& f(2,1)=8 \\
& f(3,0)=9 \\
& \text { Diagonal } 4 \\
& f(0,4)=10 \\
& f(1,3)=11 \\
& f(2,2)=12 \\
& f(3,1)=13 \\
& f(4,0)=14 \\
& \text { The index of the current } \\
& \text { pair on its diagonal }
\end{aligned}
$$

$$
\begin{array}{r}
\text { Diagonal } \\
f(0,0)=0 \\
\text { Diagonal } \\
f(0,1)=1 \\
f(1,0)=2 \\
\text { Diagonal } \\
f(0,2)=3 \\
f(1,1)=4 \\
f(2,0)=5 \\
\text { Diagonal }
\end{array}
$$

$$
\begin{array}{r}
\text { Diagonal } 0 \\
f(0,0)=0 \\
\text { Diagonal } \\
f(0,1)=1 \\
f(1,0)=2 \\
\text { Diagonal } \\
f(0,2)=3 \\
f(1,1)=4 \\
f(2,0)=5 \\
\text { Diagonal }
\end{array}
$$

$$
\begin{aligned}
\text { Diagonal } & 0 \\
f(0,0) & =0 \\
\text { Diagonal } & 1 \\
f(0,1) & =1 \\
f(1,0) & =2 \\
\text { Diagonal } & 2 \\
f(0,2) & =3 \\
f(1,1) & =4 \\
f(2,0) & =5 \\
\text { Diagonal } & 3 \\
f(0,3) & =6 \\
f(1,2) & =7 \\
f(2,1) & =8 \\
f(3,0) & =9 \\
\text { Diagonal } & 4 \\
f(0,4) & =10 \\
f(1,3) & =11 \\
f(2,2) & =12 \\
f(3,1) & =13 \\
f(4,0) & =14
\end{aligned} \quad \begin{gathered}
\\
f(4, ~ b)=(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}+\boldsymbol{b}+\mathbf{1})
\end{gathered}
$$

Theorem: $\left|\mathbb{N}^{2}\right|=|\mathbb{N}|$.

Formalizing the Proof

- We need to show that this function f is injective and surjective.
- These proofs are nontrivial, but have beautiful intuitions.
- I've included the proofs at the end of these slides if you're curious.

Next Time

- The Pigeonhole Principle
- Pleasing and poignant pigeon-powered proofs!

Appendix: Proof that $\left|\mathbb{N}^{2}\right|=|\mathbb{N}|$

Proving Surjectivity

- Given just the definition of our function:

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

It is not at all clear that every natural number can be generated.

- However, given our intuition of how the function works (crawling along diagonals), we can start to formulate a proof of surjectivity.

Proving Surjectivity

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

- What pair of numbers maps to 137 ?
- We can figure this out by first trying to figure out what diagonal this would be in.

Proving Surjectivity

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

- What pair of numbers maps to 137 ?
- We can figure this out by first trying to figure out what diagonal this would be in.

	0	1	2
$\mathbf{0}$	$(0,0)$	$(0,1)$	$(0,2)$
1	$(1,0)$	$(1,1)$	$(1,2)$
2	$(2,0)$	$(2,1)$	$(2,2)$

Proving Surjectivity

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

- What pair of numbers maps to 137 ?
- We can figure this out by first trying to figure out what diagonal this would be in.

Proving Surjectivity

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

- What pair of numbers maps to 137 ?
- We can figure this out by first trying to figure out what diagonal this would be in.

Total number of elements before

Row 0: 0
Row 1: 1
Row 2: 3
Row 3: 6
Row 4: 10

Row m : $m(m+1) / 2$

Proving Surjectivity

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

- What pair of numbers maps to 137 ?
- We can figure this out by first trying to figure out what diagonal this would be in.
- Answer: Diagonal 16, since there are 136 pairs that come before it.
- Now that we know the diagonal, we can figure out the index into that diagonal.
- $137-136=1$.
- So we'd expect the first entry of diagonal 16 to map to 137.

$$
f(1,15)=16 \times 17 / 2+1=136+1=137
$$

Generalizing Into a Proof

- We can generalize this logic as follows.
- To find a pair that maps to n :
- Find which diagonal the number is in by finding the largest d such that

$$
d(d+1) / 2 \leq n
$$

- Find which index the in that diagonal it is in by subtracting the starting position of that diagonal:

$$
k=n-d(d+1) / 2
$$

- The k th entry of diagonal d is the answer:

$$
f(k, d-k)=n
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$.

Intuitively, d is the diagonal containing n.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.

Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$.

```
We need to formalize our
intuition by showing that d gives
    an index on this diagonal.
```

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$.

$$
\begin{aligned}
& \text { If } m \text { and } n \text { are natural numbers or } \\
& \text { integers, then } m<n \text { iff } m+1 \leq n_{0} \\
& \text { This fact is remarkably useful in proofs } \\
& \text { on } \mathbb{N} \text { or } \mathbb{Z} \text {. }
\end{aligned}
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
d+1 \leq k
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2
\end{aligned}
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n
\end{aligned}
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n
\end{aligned}
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.
Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.

Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.

Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.
Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$. Now, consider the value of $f(k, d-k)$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.
Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$. Now, consider the value of $f(k, d-k)$. This is

$$
f(k, d-k)=(k+d-k)(k+d-k+1) / 2+k
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.
Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$. Now, consider the value of $f(k, d-k)$. This is

$$
\begin{aligned}
f(k, d-k) & =(k+d-k)(k+d-k+1) / 2+k \\
& =d(d+1) / 2+k
\end{aligned}
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.
Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$. Now, consider the value of $f(k, d-k)$. This is

$$
\begin{aligned}
f(k, d-k) & =(k+d-k)(k+d-k+1) / 2+k \\
& =d(d+1) / 2+k \\
& =d(d+1) / 2+n-d(d+1) / 2
\end{aligned}
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.
Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$. Now, consider the value of $f(k, d-k)$. This is

$$
\begin{aligned}
f(k, d-k) & =(k+d-k)(k+d-k+1) / 2+k \\
& =d(d+1) / 2+k \\
& =d(d+1) / 2+n-d(d+1) / 2 \\
& =n
\end{aligned}
$$

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.
Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$. Now, consider the value of $f(k, d-k)$. This is

$$
\begin{aligned}
f(k, d-k) & =(k+d-k)(k+d-k+1) / 2+k \\
& =d(d+1) / 2+k \\
& =d(d+1) / 2+n-d(d+1) / 2 \\
& =n
\end{aligned}
$$

Thus there is a pair $(a, b) \in \mathbb{N}^{2}($ namely, $(k, d-k))$ such that $f(a, b)=n$.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.
Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$. Now, consider the value of $f(k, d-k)$. This is

$$
\begin{aligned}
f(k, d-k) & =(k+d-k)(k+d-k+1) / 2+k \\
& =d(d+1) / 2+k \\
& =d(d+1) / 2+n-d(d+1) / 2 \\
& =n
\end{aligned}
$$

Thus there is a pair $(a, b) \in \mathbb{N}^{2}$ (namely, $\left.(k, d-k)\right)$ such that $f(a, b)=n$. Consequently, f is surjective.

Lemma: Let $f(a, b)=(a+b)(a+b+1) / 2+a$ be a function from \mathbb{N}^{2} to \mathbb{N}. Then f is surjective.
Proof: Consider any $n \in \mathbb{N}$. We will show that there exists a pair $(a, b) \in \mathbb{N}^{2}$ such that $f(a, b)=n$.

Consider the largest $d \in \mathbb{N}$ such that $d(d+1) / 2 \leq n$. Then, let $k=n-d(d+1) / 2$. Since $d(d+1) / 2 \leq n$, we have that $k \in \mathbb{N}$. We further claim that $k \leq d$. To see this, suppose for the sake of contradiction that $k>d$. Consequently, $k \geq d+1$. This means that

$$
\begin{aligned}
& d+1 \leq k \\
& d+1 \leq n-d(d+1) / 2 \\
& d+1+d(d+1) / 2 \leq n \\
& (2(d+1)+d(d+1)) / 2 \leq n \\
& (d+1)(d+2) / 2 \leq n
\end{aligned}
$$

But this means that d is not the largest natural number satisfying the inequality $d(d+1) / 2 \leq n$, a contradiction. Thus our assumption must have been wrong, so $k \leq d$.
Since $k \leq d$, we have that $0 \leq k-d$, so $k-d \in \mathbb{N}$. Now, consider the value of $f(k, d-k)$. This is

$$
\begin{aligned}
f(k, d-k) & =(k+d-k)(k+d-k+1) / 2+k \\
& =d(d+1) / 2+k \\
& =d(d+1) / 2+n-d(d+1) / 2 \\
& =n
\end{aligned}
$$

Thus there is a pair $(a, b) \in \mathbb{N}^{2}$ (namely, $\left.(k, d-k)\right)$ such that $f(a, b)=n$. Consequently, f is surjective.

Proving Injectivity

- Given the function

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

- It is not at all obvious that f is injective.
- We'll have to use our intuition to figure out why this would be.

	0	1	2	3	4	\ldots
0	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	\ldots
1	$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	\ldots
2	$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	\ldots
3	$(3,0)$	$(3,1)$	$(3 / 2)$	$(3,3)$	$(3,4)$	\ldots
4	$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	\ldots
\ldots		\ldots	\ldots	\ldots	\ldots	\ldots

Proving Injectivity

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

- Suppose that $f(a, b)=f(c, d)$. We need to prove $(a, b)=(c, d)$.
- Our proof will proceed in two steps:
- First, we'll prove that (a, b) and (c, d) have to be in the same diagonal.
- Next, using the fact that they're in the same diagonal, we'll show that they're at the same position within that diagonal.
- From this, we can conclude $(a, b)=(c, d)$.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.

The point of this lemma is to let us "read off" what diagonal we are in just by looking at a and b. We will need this in a second.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality.
Note that if $m=a+b$, we have

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality.
Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2
\end{aligned}
$$

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality.
Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$. Consequently, we have

$$
m^{\prime}\left(m^{\prime}+1\right) / 2 \geq(a+b+1)(a+b+2) / 2
$$

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$. Consequently, we have

$$
\begin{aligned}
m^{\prime}\left(m^{\prime}+1\right) / 2 & \geq(a+b+1)(a+b+2) / 2 \\
& =((a+b)(a+b+2)+2(a+b+1)) / 2
\end{aligned}
$$

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$. Consequently, we have

$$
\begin{aligned}
m^{\prime}\left(m^{\prime}+1\right) / 2 & \geq(a+b+1)(a+b+2) / 2 \\
& =((a+b)(a+b+2)+2(a+b+1)) / 2 \\
& =(a+b)(a+b+1) / 2+a+b+1
\end{aligned}
$$

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$. Consequently, we have

$$
\begin{aligned}
m^{\prime}\left(m^{\prime}+1\right) / 2 & \geq(a+b+1)(a+b+2) / 2 \\
& =((a+b)(a+b+2)+2(a+b+1)) / 2 \\
& =(a+b)(a+b+1) / 2+a+b+1 \\
& >(a+b)(a+b+1) / 2+a
\end{aligned}
$$

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$. Consequently, we have

$$
\begin{aligned}
m^{\prime}\left(m^{\prime}+1\right) / 2 & \geq(a+b+1)(a+b+2) / 2 \\
& =((a+b)(a+b+2)+2(a+b+1)) / 2 \\
& =(a+b)(a+b+1) / 2+a+b+1 \\
& >(a+b)(a+b+1) / 2+a \\
& =f(a, b)
\end{aligned}
$$

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$. Consequently, we have

$$
\begin{aligned}
m^{\prime}\left(m^{\prime}+1\right) / 2 & \geq(a+b+1)(a+b+2) / 2 \\
& =((a+b)(a+b+2)+2(a+b+1)) / 2 \\
& =(a+b)(a+b+1) / 2+a+b+1 \\
& >(a+b)(a+b+1) / 2+a \\
& =f(a, b)
\end{aligned}
$$

Thus m ' does not satisfy the inequality.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$. Consequently, we have

$$
\begin{aligned}
m^{\prime}\left(m^{\prime}+1\right) / 2 & \geq(a+b+1)(a+b+2) / 2 \\
& =((a+b)(a+b+2)+2(a+b+1)) / 2 \\
& =(a+b)(a+b+1) / 2+a+b+1 \\
& >(a+b)(a+b+1) / 2+a \\
& =f(a, b)
\end{aligned}
$$

Thus m ' does not satisfy the inequality. Consequently, $m=a+b$ is the largest natural number satisfying the inequality.

Lemma: Suppose $f(a, b)=(a+b)(a+b+1) / 2+a$. Then the largest $m \in \mathbb{N}$ for which $m(m+1) / 2 \leq f(a, b)$ is given by $m=a+b$.
Proof: First, we show that $m=a+b$ satisfies the above inequality. Note that if $m=a+b$, we have

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& \geq(a+b)(a+b+1) / 2 \\
& =m(m+1) / 2
\end{aligned}
$$

So m satisfies the inequality.
Next, we will show that any $m^{\prime} \in \mathbb{N}$ with $m^{\prime}>a+b$ will not satisfy the inequality. Take any $m^{\prime} \in \mathbb{N}$ where $m^{\prime}>a+b$. This means that $m^{\prime} \geq a+b+1$. Consequently, we have

$$
\begin{aligned}
m^{\prime}\left(m^{\prime}+1\right) / 2 & \geq(a+b+1)(a+b+2) / 2 \\
& =((a+b)(a+b+2)+2(a+b+1)) / 2 \\
& =(a+b)(a+b+1) / 2+a+b+1 \\
& >(a+b)(a+b+1) / 2+a \\
& =f(a, b)
\end{aligned}
$$

Thus m ' does not satisfy the inequality. Consequently, $m=a+b$ is the largest natural number satisfying the inequality.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective. Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.

First, we will show that $a+b=c+d$.

Intuitively, this proves that
(a, b) and (c, d) belong to the same diagonal.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
f(a, b)=(a+b)(a+b+1) / 2+a
$$

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.

First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2
\end{aligned}
$$

This step works because we know that any number \boldsymbol{n} bigger than $\boldsymbol{a}+\boldsymbol{b}$ doesn't satisfy
$n(n+1) / 2 \leq f(a, b)$
This means that
$f(a, b)<n(n+1) / 2$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c
\end{aligned}
$$

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.

First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a+b=c+d$.

> Now that we've got these points
> in the same diagonal, we just
> need to show that they have the same index.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a+b=c+d$. Given this, we have that

$$
f(a, b)=f(c, d)
$$

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a+b=c+d$. Given this, we have that

$$
\begin{aligned}
f(a, b) & =f(c, d) \\
(a+b)(a+b+1) / 2+a & =(c+d)(c+d+1) / 2+c
\end{aligned}
$$

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a+b=c+d$. Given this, we have that

$$
\begin{aligned}
f(a, b) & =f(c, d) \\
(a+b)(a+b+1) / 2+a & =(c+d)(c+d+1) / 2+c \\
(a+b)(a+b+1) / 2+a & =(a+b)(a+b+1) / 2+c
\end{aligned}
$$

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.
First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a+b=c+d$. Given this, we have that

$$
\begin{aligned}
f(a, b) & =f(c, d) \\
(a+b)(a+b+1) / 2+a & =(c+d)(c+d+1) / 2+c \\
(a+b)(a+b+1) / 2+a & =(a+b)(a+b+1) / 2+c \\
a & =c
\end{aligned}
$$

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.

First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a+b=c+d$. Given this, we have that

$$
\begin{aligned}
f(a, b) & =f(c, d) \\
(a+b)(a+b+1) / 2+a & =(c+d)(c+d+1) / 2+c \\
(a+b)(a+b+1) / 2+a & =(a+b)(a+b+1) / 2+c \\
a & =c
\end{aligned}
$$

Since $a=c$ and $a+b=c+d$, we have that $b=d$.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.

First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a+b=c+d$. Given this, we have that

$$
\begin{aligned}
f(a, b) & =f(c, d) \\
(a+b)(a+b+1) / 2+a & =(c+d)(c+d+1) / 2+c \\
(a+b)(a+b+1) / 2+a & =(a+b)(a+b+1) / 2+c \\
a & =c
\end{aligned}
$$

Since $a=c$ and $a+b=c+d$, we have that $b=d$. Thus $(a, b)=(c, d)$, as required.

Theorem: Let $f(a, b)=(a+b)(a+b+1) / 2+a$. Then f is injective.
Proof: Consider any $(a, b),(c, d) \in \mathbb{N}^{2}$ such that $f(a, b)=f(c, d)$. We will show that $(a, b)=(c, d)$.

First, we will show that $a+b=c+d$. To do this, assume for the sake of contradiction that $a+b \neq c+d$. Then either $a+b<c+d$ or $a+b>c+d$. Assume without loss of generality that $a+b<c+d$.
By our lemma, we know that $m=a+b$ is the largest natural number such that $f(a, b) \leq m(m+1) / 2$. Since $a+b<c+d$, this means that

$$
\begin{aligned}
f(a, b) & =(a+b)(a+b+1) / 2+a \\
& <(c+d)(c+d+1) / 2 \\
& \leq(c+d)(c+d+1) / 2+c \\
& =f(c, d)
\end{aligned}
$$

But this means that $f(a, b)<f(c, d)$, contradicting that $f(a, b)=f(c, d)$. We have reached a contradiction, so our assumption must have been wrong. Thus $a+b=c+d$. Given this, we have that

$$
\begin{aligned}
f(a, b) & =f(c, d) \\
(a+b)(a+b+1) / 2+a & =(c+d)(c+d+1) / 2+c \\
(a+b)(a+b+1) / 2+a & =(a+b)(a+b+1) / 2+c \\
a & =c
\end{aligned}
$$

Since $a=c$ and $a+b=c+d$, we have that $b=d$. Thus $(a, b)=(c, d)$, as required.

