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Functions

● A function f is a mapping such that every value in A is 
associated with a single value in B.
● For every a ∈ A, there exists some b ∈ B with f(a) = b.

● If f(a) = b0 and f(a) = b1, then b0 = b1.

● If f is a function from A to B, we call A the domain of f 
andl B the codomain of f.

● We denote that f is a function from A to B by writing

f : A → B



  

Injective Functions

● A function f : A → B is called injective (or 
one-to-one) iff each element of the 
codomain has at most one element of the 
domain associated with it.
● A function with this property is called an 

injection.

● Formally:

If f(x0) = f(x1), then x0 = x1  

● An intuition: injective functions label the 
objects from A using names from B.



  

Surjective Functions

● A function f : A → B is called surjective (or 
onto) iff each element of the codomain has at 
least one element of the domain associated 
with it.
● A function with this property is called a 

surjection.
● Formally:

For any b ∈ B, there exists at
least one a ∈ A such that f(a) = b.

● An intuition: surjective functions cover every 
element of B with at least one element of A.



  

Bijections

● A function that associates each element 
of the codomain with a unique element of 
the domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is 
both injective and surjective.

● A bijection is a one-to-one 
correspondence between two sets.



  

Comparing Cardinalities

● The relationships between set cardinalities are 
defined in terms of functions between those 
sets.

● |S| = |T| is defined using bijections.

|S| = |T| iff there is a bijection f : S → T
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Theorem: |ℤ| = |ℕ|.
Proof: We exhibit a bijection from ℤ to ℕ.  Let f : ℤ → ℕ be defined as follows:

First, we prove this is a legal function from ℤ to ℕ.  Consider any x ∈ ℤ.  Note
that if x ≥ 0, then f(x) = 2x.  Since in this case x is a positive integer, 2x is a
natural number. Otherwise, if x < 0, then f(x) = -2x + 1 = 2(-x) + 1.  Since x is
a negative integer, -x is a positive integer.  Thus 2(-x) + 1 is a positive integer,
which is a natural number.  Thus in all cases f(x) is a natural number.

 

Next, we prove f is injective.  Suppose that f(x) = f(y).  We will prove that
x = y.  Note that, by construction, f(z) is even iff z is even.  Since f(x) = f(y), we
know that x and y must have the same parity.  We consider two cases:

 

Case 1: x and y are even.  Then f(x) = 2x and f(y) = 2y.  Since f(x) = f(y),
we have 2x = 2y.  Thus x = y.

 

Case 2: x and y are odd.  Then f(x) = -2x - 1 and f(y) = -2y - 1.  Since
f(x) = f(y), we have -2x - 1 = -2y - 1, so x = y.

 

Finally, we prove f is surjective.  Consider any n ∈ ℕ.  We will prove that there
is some x ∈ ℤ such that f(x) = n.  We consider two cases:

 

Case 1: n is even.  Then n / 2 is a nonnegative integer.  Moreover,
f(n / 2) = 2(n / 2) = n.

 

Case 2: n is odd.  Then -(n + 1) / 2 is a negative integer.  Moreover,
f(-(n + 1) / 2) = -2(-(n + 1) / 2) – 1 = n + 1 – 1 = n.

 

Since f is injective and surjective, it is a bijection.  Thus |ℤ| = |ℕ|. ■
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Why This Matters 

● Note the thought process from this proof:
● Start by drawing a picture to get an intuition.
● Convert the picture into a mathematical object 

(here, a function).
● Prove the object has the desired properties.

● This technique is at the heart of 
mathematics.

● We will use it extensively throughout the 
rest of this lecture.



  

Cantor's Theorem Revisited



  

Comparing Cardinalities

● We define |S| ≤ |T| as follows:

|S| ≤ |T| iff there is an injection f : S → T

The ≤ relation over set cardinalities is a 
total order.  For any sets R, S, and T:

|S| ≤ |S|. (reflexivity)

If |R| ≤ |S| and |S| ≤ |T|, then |R| ≤ |T|. 
(transitivity)

If |S| ≤ |T| and |T| ≤ |S|, then |S| = |T|. 
(antisymmetry)

Either |S| ≤ |T| or |T| ≤ |S|. (totality)



  

Comparing Cardinalities

● Formally, we define < on cardinalities as

|S| < |T| iff |S| ≤ |T| and |S| ≠ |T| 

● In other words:
● There is an injection from S to T.
● There is no bijection between S and T.



  

Cantor's Theorem

● Cantor's Theorem states that

For every set S, |S| < | (℘ S)|    
● This is how we concluded that there are 

more problems to solve than programs to 
solve them.

● We informally sketched a proof of this in 
the first lecture.

● Let's now formally prove Cantor's 
Theorem.



  

Lemma: For any set S, |S| ≤ | (℘ S)|.

Proof: Consider any set S.  We show that there is an
injection f : S → (℘ S).  Define f(x) = {x}.

To see that f(x) is a legal function from S to
℘(S), consider any x ∈ S.  Then {x} ⊆ S, so
{x} ∈ (℘ S).  This means that f(x) ∈ (℘ S), so f is
a valid function from S to (℘ S).

To see that f is injective, consider any x0 and x1

such that f(x0) = f(x1).  We prove that x0 = x1.  To
see this, note that if f(x0) = f(x1), then
{x0} = {x1}.  Since two sets are equal iff their
elements are equal, this means that x0 = x1 as
required.  Thus f is an injection from S to (℘ S),
so |S| ≤ | (℘ S)|. ■
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Formalizing the Diagonal Argument

● Proof by contradiction; assume there is a 
bijection f : S → (℘ S).

● The diagonal argument shows that f cannot be a 
bijection:
● Construct the table given the bijection f.
● Construct the complemented diagonal.
● Show that the complemented diagonal cannot appear 

anywhere in the table.
● Conclude, therefore, that f is not a bijection.

For finite sets this is fine, but what if the set is 
infinitely large?
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The diagonal set D is the set

D = { x ∈ S | x ∉ f(x) }

There is no longer a dependence on the
existence of the two-dimensional table.



  

Lemma: For any set S, |S| ≠ | (℘ S)|.
 

Proof: By contradiction; assume that there exists a set S such
that |S| = | (℘ S)|.  This means that there exists a bijection 
f : S → (℘ S).  Consider the set D = { x ∈ S | x ∉ f(x) }.  Note that 
D ⊆ S, since by construction every x ∈ D satisfies x ∈ S.

 

Since f is a bijection, it is surjective, so there must be some
y ∈ S such that f(y) = D.  Now, either y ∈ f(y), or y ∉ f(y).  We
consider these cases separately:

 

   Case 1: y ∈ f(y).  By our definition of D, this means that y ∉ D. 
However, since y ∈ f(y) and f(y) = D, we have y ∈ D.
We have reached a contradiction.

 

   Case 2: y ∉ f(y).  By our definition of D, this means that y ∈ D.
However, since y ∉ f(y) and f(y) = D, we have y ∉ D.
We have reached a contradiction.

 

In either case we reach a contradiction, so our assumption
must have been wrong.  Thus for every set S, we have that
|S| ≠ | (℘ S)|. ■
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Theorem (Cantor's Theorem): For any set S, we
have |S| < | (S)|.℘

Proof: Consider any set S.  By our first lemma, we
have that |S| ≤ |℘(S)|.  By our second lemma, we
have that |S| ≠ | (℘ S)|.  Thus |S| < |℘(S)|. ■



  

Why All This Matters

● The intuition behind a result is often more 
important than the result itself.

● Given the intuition, you can usually 
reconstruct the proof.

● Given just the proof, it is almost impossible 
to reconstruct the intuition.

● Think about compilation – you can more 
easily go from a high-level language to 
machine code than the other way around.



  

Cantor's Other Diagonal Argument



  

What is |ℝ|?



  

Theorem: |ℕ| < |ℝ|.



  

Sketch of the Proof

● To prove that |ℕ| < |ℝ|, we will use a 
modification of the proof of Cantor's 
theorem.

● First, we will directly prove that
|ℕ| ≤ |ℝ|.

● Second, we will use a proof by 
diagonalization to show that |ℕ| ≠ |ℝ|.



  

Theorem: |ℕ| ≤ |ℝ|.
Proof: We will exhibit an injection f : ℕ → ℝ.  Thus by

 definition, |ℕ| ≤ |ℝ|.

Consider the function f(n) = n.  Since all natural
numbers are real numbers, this is a valid function
from ℕ to ℝ.  Moreover, it is injective.  To see this,
consider any n0, n1 ∈ ℕ such that f(n0) = f(n1).  We
will prove that n0 = n1.  To see this, note that
n0 = f(n0) = f(n1) = n1.  Thus n0 = n1, as required, so
f is injective. ■
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|ℕ| ≠ |ℝ|

● Now, we need to show that |ℕ| ≠ |ℝ|.
● To do this, we will use a proof by diagonalization 

similar to the one for Cantor's Theorem.
● Assume there is a bijection f : ℕ → ℝ.
● Construct a two-dimensional table from f.
● Construct a “diagonal number” from the table.
● Show the diagonal number is not in the table.
● Conclude f is not a bijection.
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Theorem: |ℕ| ≠ |ℝ|.
Proof: By contradiction; suppose that |ℕ| = |ℝ|.  Then there exists a

bijection f : ℕ → ℝ.

We introduce some new notation.  For a real number r, let r0 be the
integer part of r, and let rn for n ∈ ℕ, n > 0, be the nth digit in the
decimal representation of r.  Now, define the real number d as
follows:

Since d ∈ ℝ, there must be some n ∈ ℕ such that f(n) = d.  So
consider f(n)n and dn.  We consider two cases:

Case 1: f(n)n = 0.  Then by construction dn = 1, meaning that f(n) ≠ d.

Case 2: f(n)n ≠ 0.  Then by construction dn = 0, meaning that f(n) ≠ d.

In either case, f(n) ≠ d.  This contradicts the fact that f(n) = d.  We
have reached a contradiction, so our assumption must have been
wrong.  Thus |ℕ| ≠ |ℝ| ■
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The Power of Diagonalization

● A large number of fundamental results in 
computability and complexity theory are 
based on diagonal arguments.

● We will see at least three of them in the 
remainder of the quarter.



  

An Interesting Historical Aside

● The diagonalization proof that |ℕ| ≠ |ℝ| was 
Cantor's original diagonal argument; he 
proved Cantor's theorem later on.

● However, this was not the first proof that
|ℕ| ≠ |ℝ|.  Cantor had a different proof of 
this result based on infinite sequences.

● Come talk to me after class if you want to 
see the original proof; it's absolutely 
brilliant!



  

Cantor's Other Other Diagonal 
Argument

(This one is different!)



  

What is |ℕ2|?



  

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

0

0

1 2 3 4

1

2

3

4

...

...

...

...

...

...

... ... ... ... ...… ...

(0, 0)

(0, 1)
(1, 0)

(0, 2)
(1, 1)
(2, 0)

(0, 3)
(1, 2)
(2, 1)
(3, 0)

(0, 4)
(1, 3)
(2, 2)
(3, 1)
(4, 0)

…



  

Diagonal 0
f(0, 0) = 0

 

 Diagonal 1
f(0, 1) = 1 
f(1, 0) = 2 

 

Diagonal 2
f(0, 2) = 3 
f(1, 1) = 4 
f(2, 0) = 5 

 

Diagonal 3
f(0, 3) = 6 
f(1, 2) = 7 
f(2, 1) = 8 
f(3, 0) = 9 

 

Diagonal 4
f(0, 4) = 10
f(1, 3) = 11
f(2, 2) = 12
f(3, 1) = 13
f(4, 0) = 14

…

f(a, b) =

The number of elements on
 all previous diagonals

The index of the current
pair on its diagonal

+
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f(a, b) = (a + b)(a + b + 1) / 2 + a
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Theorem: |ℕ2| = |ℕ|.



  

Formalizing the Proof

● We need to show that this function f is 
injective and surjective.

● These proofs are nontrivial, but have 
beautiful intuitions.

● I've included the proofs at the end of 
these slides if you're curious.



  

Next Time

● The Pigeonhole Principle
● Pleasing and poignant pigeon-powered 

proofs!



  

Appendix: Proof that |ℕ2| = |ℕ|



  

Proving Surjectivity

● Given just the definition of our function:

f(a, b) = (a + b)(a + b + 1) / 2 + a

It is not at all clear that every natural 
number can be generated.

● However, given our intuition of how the 
function works (crawling along 
diagonals), we can start to formulate a 
proof of surjectivity.



  

Proving Surjectivity

f(a, b) = (a + b)(a + b + 1) / 2 + a
● What pair of numbers maps to 137?
● We can figure this out by first trying to figure out 

what diagonal this would be in.

Answer: Diagonal 16, since there are 136 pairs that come 
before it.

Now that we know the diagonal, we can figure out 
the index into that diagonal.

137 – 136 = 1.

So we'd expect the first entry of diagonal 16 to map 
to 137.

f(1, 15) = 16 × 17 / 2 + 1 = 136 + 1 = 137
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Proving Surjectivity

f(a, b) = (a + b)(a + b + 1) / 2 + a
● What pair of numbers maps to 137?
● We can figure this out by first trying to figure out 

what diagonal this would be in.
● Answer: Diagonal 16, since there are 136 pairs that come 

before it.
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the index into that diagonal.
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● So we'd expect the first entry of diagonal 16 to map 
to 137.

f(1, 15) = 16 × 17 / 2 + 1 = 136 + 1 = 137



  

Generalizing Into a Proof

● We can generalize this logic as follows.
● To find a pair that maps to n:

● Find which diagonal the number is in by finding 
the largest d such that

d(d + 1) / 2 ≤ n    
● Find which index the in that diagonal it is in by 

subtracting the starting position of that diagonal:

k = n – d(d + 1) / 2
● The kth entry of diagonal d is the answer:

f(k, d – k) = n   



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■
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Now, we need to rigorously 
establish that we came up with a 
legal pair, and that the pair 

actually maps to n.

Intuition: k is the position within 
this diagonal.

Now, we need to rigorously 
establish that we came up with a 
legal pair, and that the pair 

actually maps to n.



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■

We need to formalize our 
intuition by showing that d gives 

an index on this diagonal.

We need to formalize our 
intuition by showing that d gives 

an index on this diagonal.



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■

If m and n are natural numbers or 
integers, then m < n iff m + 1  ≤ n.  
This fact is remarkably useful in proofs 

on  or .ℕ ℤ

If m and n are natural numbers or 
integers, then m < n iff m + 1  ≤ n.  
This fact is remarkably useful in proofs 

on  or .ℕ ℤ



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■

We have a valid pair!  All that's 
left to do now is to show that 

index k on diagonal d maps to n.

We have a valid pair!  All that's 
left to do now is to show that 

index k on diagonal d maps to n.



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Lemma: Let f(a, b) = (a + b)(a + b + 1) / 2 + a be a function from ℕ2 to ℕ.  Then
 f is surjective.

 

Proof: Consider any n ∈ ℕ.  We will show that there exists a pair (a, b) ∈ ℕ2 such
that f(a, b) = n.

 

Consider the largest d ∈ ℕ such that d(d + 1) / 2 ≤ n.  Then, let
k = n – d(d + 1) / 2.  Since d(d + 1) / 2 ≤ n, we have that k ∈ ℕ.  We
further claim that k ≤ d.  To see this, suppose for the sake of
contradiction that k > d.  Consequently, k ≥ d + 1.  This means that

 

d + 1 ≤ k
d + 1 ≤ n – d(d + 1) / 2
d + 1 + d(d + 1) / 2 ≤ n
(2(d + 1) + d(d + 1)) / 2 ≤ n
(d + 1)(d + 2) / 2 ≤ n

 

But this means that d is not the largest natural number satisfying the
inequality d(d + 1) / 2 ≤ n, a contradiction.  Thus our assumption must
have been wrong, so k ≤ d.

 

Since k ≤ d, we have that 0 ≤ k – d, so k – d ∈ ℕ.  Now, consider the value
of f(k, d – k).  This is

 

 f(k, d – k) = (k + d – k)(k + d – k + 1) / 2 + k
= d(d + 1) / 2 + k
= d(d + 1) / 2 + n – d(d + 1) / 2
= n

 

Thus there is a pair (a, b) ∈ ℕ2 (namely, (k, d – k)) such that f(a, b) = n.
Consequently, f is surjective. ■



  

Proving Injectivity

● Given the function

f(a, b) = (a + b)(a + b + 1) / 2 + a
● It is not at all obvious that f is injective.
● We'll have to use our intuition to figure 

out why this would be.
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Proving Injectivity

f(a, b) = (a + b)(a + b + 1) / 2 + a
● Suppose that f(a, b) = f(c, d).  We need to prove 

(a, b) = (c, d).
● Our proof will proceed in two steps:

● First, we'll prove that (a, b) and (c, d) have to be in the 
same diagonal.

● Next, using the fact that they're in the same diagonal, 
we'll show that they're at the same position within 
that diagonal.

● From this, we can conclude (a, b) = (c, d).



  

Lemma: Suppose f(a, b) = (a + b)(a + b + 1) / 2 + a.  Then the
largest m ∈ ℕ for which m(m + 1) / 2 ≤ f(a, b) is given by
m = a + b.

 

Proof: First, we show that m = a + b satisfies the above inequality.
Note that if m = a + b, we have

 

    f(a, b) = (a + b)(a + b + 1) / 2 + a
≥ (a + b)(a + b + 1) / 2
= m(m + 1) / 2

 

So m satisfies the inequality.
 

Next, we will show that any m' ∈ ℕ with m' > a + b will not
satisfy the inequality.  Take any m' ∈ ℕ where m' > a + b. 
This means that m' ≥ a + b + 1.  Consequently, we have

 

m'(m' + 1) / 2 ≥ (a + b + 1)(a + b + 2) / 2
  = ((a +  b)(a + b + 2) + 2(a + b + 1)) / 2
  = (a + b)(a + b + 1) / 2 + a + b + 1
  > (a + b)(a + b + 1) / 2 + a
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Theorem: Let f(a, b) = (a + b)(a + b + 1) / 2 + a.  Then f is injective.
 

Proof: Consider any (a, b), (c, d) ∈ ℕ2 such that f(a, b) = f(c, d).  We will
show that (a, b) = (c, d).

 

First, we will show that a + b = c + d.  To do this, assume for the sake
of contradiction that a + b ≠ c + d.  Then either a + b < c + d or
a + b > c + d.  Assume without loss of generality that a + b < c + d.

 

By our lemma, we know that m = a + b is the largest natural number
such that f(a, b) ≤ m(m + 1) / 2.  Since a + b < c + d, this means that

 

f(a, b) = (a + b)(a + b + 1) / 2 + a
< (c + d)(c + d + 1) / 2
≤ (c + d)(c + d + 1) / 2 + c
= f(c, d) 

 

But this means that f(a, b) < f(c, d), contradicting that f(a, b) = f(c, d).
We have reached a contradiction, so our assumption must have been
wrong.  Thus a + b = c + d.  Given this, we have that

 

f(a, b) = f(c, d)
(a + b)(a + b + 1) / 2 + a = (c + d)(c + d + 1) / 2 + c
(a + b)(a + b + 1) / 2 + a = (a + b)(a + b + 1) / 2 + c

a = c
 

Since a = c and a + b = c + d, we have that b = d.  Thus
(a, b) = (c, d), as required. ■
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Intuitively, this proves that 
(a, b) and (c, d) belong to the 
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f(a, b) = (a + b)(a + b + 1) / 2 + a
< (c + d)(c + d + 1) / 2
≤ (c + d)(c + d + 1) / 2 + c
= f(c, d) 

 

But this means that f(a, b) < f(c, d), contradicting that f(a, b) = f(c, d).
We have reached a contradiction, so our assumption must have been
wrong.  Thus a + b = c + d.  Given this, we have that

 

f(a, b) = f(c, d)
(a + b)(a + b + 1) / 2 + a = (c + d)(c + d + 1) / 2 + c
(a + b)(a + b + 1) / 2 + a = (a + b)(a + b + 1) / 2 + c

a = c
 

Since a = c and a + b = c + d, we have that b = d.  Thus
(a, b) = (c, d), as required. ■
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By our lemma, we know that m = a + b is the largest natural number
such that f(a, b) ≤ m(m + 1) / 2.  Since a + b < c + d, this means that

 

f(a, b) = (a + b)(a + b + 1) / 2 + a
< (c + d)(c + d + 1) / 2
≤ (c + d)(c + d + 1) / 2 + c
= f(c, d) 

 

But this means that f(a, b) < f(c, d), contradicting that f(a, b) = f(c, d).
We have reached a contradiction, so our assumption must have been
wrong.  Thus a + b = c + d.  Given this, we have that

 

f(a, b) = f(c, d)
(a + b)(a + b + 1) / 2 + a = (c + d)(c + d + 1) / 2 + c
(a + b)(a + b + 1) / 2 + a = (a + b)(a + b + 1) / 2 + c

a = c
 

Since a = c and a + b = c + d, we have that b = d.  Thus
(a, b) = (c, d), as required. ■
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