Graphs and Relations



Friday Four Square!
4.15PM, Outside Gates



Announcements

 Problem Set 1 due right now.

e Problem Set 2 out.

e Checkpoint due Monday, October 8.
« Assignment due Friday, October 12.

« Play around with induction and its
applications!



Mathematical Structures

e Just as there are common data structures
in programming, there are common
mathematical structures in discrete math.

« So far, we've seen simple structures like
sets and natural numbers, but there are
many other important structures out
there.

« For the next week, we'll explore several of
them.



Some Formalisms



Ordered and Unordered Pairs

« An unordered pair is a set {a, b} of two elements
(remember that sets are unordered).

« {0,1} =11, 0}

« An ordered pair (a, b) is a pair of elements in a
specific order.

e (0,1 # (1, 0).

« Two ordered pairs are equal iff each of their components
are equal.

- An ordered tuple (a,, a,, ..., a ) is an collection of n
elements in a specific order.

« This is sometimes called a sequence.

« As with ordered pairs, two ordered tuples are equal iff
each of their elements are equal.



The Cartesian Product

 Recall: The power set o(S) of a set is the set of
all its subsets.

e The Cartesian Product of A X B of two sets is
defined as

AXB={(a, b)laeAandb € B}
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Some graphs are undirected.
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Some graphs are undirected.

You can think of them as directed
graphs with edges both ways.




Graphs are Everywhere!
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Formalisms

A graph is an ordered pair G = (V, E) where
 Vis a set of the vertices (nodes) of the graph.
« E is a set of the edges (arcs) of the graph.

 E can be a set of ordered pairs or unordered pairs.

« If E consists of ordered pairs, G is a directed
graph.

« If E consists of unordered pairs, G is an undirected
graph.

 Each edge is an pair of the start and end (or
source and sink) of the edge.
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A path from v, to v_1is a sequence of edges
(v, v,), (v, v,), ..., (v _,, V.)).

The length of a path is the number
of edges it contains.
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A node v is reachable from node u
iff there is a path from u to v.

We denote this as u - v.
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A cycle in a graph is a path
(v, v,), ..., (v, v)))

that starts and ends at the same node.



A simple path is a path that
does not repeat any nodes or edges.

A simple cycle is a cycle that
does not repeat any nodes or edges
(except the first/last node).



Summary of Terminology

« A path is a series of edges connecting two
nodes.

 The length of a path is the number of edges in
the path.

A node vis reachable from u if there is a path
from u to v.

« A cycle is a path from a node to itself.

A simple path is a path with no duplicate
nodes or edges.

« A simple cycle is a cycle with no duplicate
nodes or edges (except the start/end node).



Representing Prerequisites






A directed acyclic graph (DAG) is a
directed graph with no cycles.



Examples of DAGs
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Topological Sort

* A topological ordering of the nodes of a DAG is one
where no node is listed before its predecessors.

« Algorithm:
 Find a node with no incoming edges.

« Remove it from the graph.

« Add it to the resulting ordering.
« There may be many valid orderings:
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Topological Sort

* A topological ordering of the nodes of a DAG is one
where no node is listed before its predecessors.

« Algorithm:
 Find a node with no incoming edges.

« Remove it from the graph.

« Add it to the resulting ordering.
« There may be many valid orderings:

R



Theorem: A graph has a topological
ordering iff it is a DAG.



Relations



Relations

A binary relation is a property that describes whether
two objects are related in some way.

« Examples:

Less-than: x <y

Divisibility: x divides y evenly

Friendship: x is a friend of y

Tastiness: x is tastier than y
« Given binary relation R, we write aRb iff a is related to b.
ca=>hb
ca<b
* a “is tastier than” b
e a =, b



Relations as Sets

 Formally, a relation is a set of ordered pairs
representing the pairs for which the relation is
true.

« Equality: { (0, 0), (1, 1), (2, 2), ... }
« Less-than: { (0, 1), (O, 2), ..., (1, 2), (1, 3), ... }
 Formally, we have that

aRb = (a, b) € R

 The binary relations we'll discuss today will be
binary relations over a set A.

« Each relation is a subset of AZ.



Binary Relations and Graphs

 Each (directed) graph defines a binary
relation:

 aRb iff (a, b) is an edge.

 Each binary relation defines a graph:
* (a, b) is an edge iff aRb.

 Example: Less-than



An Important Question

 Why study binary relations and graphs
separately?
« Simplicity:

e Certain operations feel more “natural” on
binary relations than on graphs and vice-versa.

« Converting a relation to a graph might result in
an overly complex graph (or vice-versa).

 Terminology:

« Vocabulary for graphs often different from that
for relations.



Equivalence Relations



“x and y have the
same color”

“x and y have the
same area”

“x and y have the
same shape”

“x and y are
programs that
produce the same
output”



Informally

An equivalence relation is a relation that
indicates when objects have some trait in
common.

Do not use fhis definition in proofs:
IT's just an infuition:



Properties of Equivalence Relations

xRy = x and y have the same shape.
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Symmetry

A binary relation R over a set A
is called symmetric iff

Forany x € A and y € A, if xRy, then yRx.

This definition (and others like it) can be used
in tormal proofs.,



An Intuition for Symmetry
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Foranyx € Aand y € A,
if xRy, then yRx.
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Reflexivity

A binary relation R over a set A
is called reflexive iff

For any x € A, we have xRx.



Some Reflexive Relations

« Equality:
 For any x, we have x = x.
 Not greater than:
« For any integer x, we have x = x.

» Subset:
 For any set S, we have S C S.



An Intuition for Reflexivity
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For any x € A,
XRXx



Properties of Equivalence Relations

xRy = x and y have the same shape.



Properties of Equivalence Relations

xRy = x and y have the same shape.

©-0 - ©-0



Properties of Equivalence Relations

XRy = x and y have the same shape.

90 - 90
9-@




Properties of Equivalence Relations

xRy = x and y have the same shape.



Properties of Equivalence Relations

xRy = x and y have the same shape.




Properties of Equivalence Relations

xRy = x and y have the same shape.

XRy and VRz



Properties of Equivalence Relations
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Transitivity

A binary relation R over a set A
is called transitive iff

Forany x, y, z € A,
if xRy and yRz,
then xRz.



Some Transitive Relations

« Equality:
« X = yand y = z implies x = z.
» Less-than:
e X < yand y < z implies x < z.
» Subset:
e« SCTand T C U implies S C U.



An Intuition for Transitivity
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Forany x, y,z €A,
if xRy and yRz,
then xRz.



Equivalence Relations

A binary relation R over a set A is called
an equivalence relation if it is

¢ reflexive,
 symmetric, and
 transitive.



Sample Equivalence Relations

 Equality: x = y.

 For any graph G, the relation x o y
meaning “x and y are mutually
reachable.”

- For any integer k, the relation x =,y of

modular congruence.
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What property says this
edge must be here?
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xRy = x and y have the same color.
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x and y have the same color.
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Equivalence Classes

 Given an equivalence relation R over a
set A, for any a € A, the equivalence
class of a is the set

lal, = { x| x € A and aRx }

» Informally, the set of all elements equal
to a.

* R partitions the set A into a set of
equivalence classes.



Theorem: Let R be an equivalence relation over a set A. Then every
element of A belongs to exactly one equivalence class.
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Then every
element of A belongs to exactly one equivalence class.

How do we
prove This?




Existence and Uniqueness

 The proot we are attempting is a type ot
proof called an existence and
uniqueness proof.

« We need to show that for any a € A, there
exists an equivalence class containing a
and that this equivalence class is
unique.

 These are two completely separate steps.



Proving Existence

» To prove existence, we need to show
that for any a € A, that a belongs to at
least one equivalence class.

» This is just a proof of an existential
statement.

 Can we find an equivalence class
containing a?



Theorem: Let R be an equivalence relation over a set A. Then every
element of A belongs to exactly one equivalence class.
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Proving Uniqueness

« To prove that there is a unique object
with some property, we can do the
following:

« Consider any two arbitrary objects x and y
with that property.

« Show that x = y.

 Conclude, theretfore, that there is only one
object with that property, and we just gave it
two different names.
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Since R is an equivalence relation, R is reflexive

Since R is an equivalence relation, R is symmetric and transitive.



Since R is an equivalence relation, R is reflexive

This proot helps to justity our definition ot
equivalence relations, We need all three of fhe
properties we've listed in order tor this proot fo
work, and we don't need any others,

Since R is an equivalence relation, R is symmetric and transitive.



Next Time

 Order Relations

« How can we rank objects against one another?
 Functions

« How do we transform objects into one another?
« Cardinality

« How do we formalize infinite cardinality?
 Cantor's Theorem Revisited

« Making sense of diagonalization.
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