
  

Mathematical Induction

Part Two



  

The principle of mathematical 
induction states that if for some property 

P(n), we have that

P(0) is true

and

For any n ∈ ℕ, we have P(n) → P(n + 1)

Then

For any n ∈ ℕ, P(n) is true.

If it starts … … and it keeps 
going …

… then it's 
always true.



  

Theorem: For any natural number n, 
Proof: By induction.  Let P(n) be
 

P(n) ≡                  
 

For our base case, we need to show P(0) is true, meaning that 
 

Since the empty sum is defined to be 0, this claim is true.

For the inductive step, assume that for some n ∈ ℕ that P(n)
holds, so

 

We need to show that P(n + 1) holds, meaning that
 

To see this, note that
 

Thus P(n + 1) is true, completing the induction. ■
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Induction in Practice

● Typically, a proof by induction will not 
explicitly state P(n).

● Rather, the proof will describe P(n) implicitly 
and leave it to the reader to fill in the details.

● Provided that there is sufficient detail to 
determine
● what P(n) is,
● that P(0) is true, and that
● whenever P(n) is true, P(n + 1) is true,

the proof is usually valid.



  

Theorem: For any natural number n,
 
Proof: By induction on n.  For our base case, if n = 0, note that

and the theorem is true for 0.  

For the inductive step, assume that for some n the theorem is true.  
Then we have that 

so the theorem is true for n + 1, completing the induction. ■
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A Variant of Induction



  

n2 versus 2n

02 = 0

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

102 = 100

20 = 1

21 = 2

22 = 4

23 = 8

24 = 16

25 = 32

26 = 64

27 = 128

28 = 256

29 = 512

210 = 1024
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2n is much 
bigger here.  
Does the trend 

continue?



  

Theorem: For any natural number n ≥ 5, n2 < 2n.
 

Proof: By induction on n.  As a base case, if n = 5, then we have
that 52 = 25 < 32 = 25, so the claim holds.

For the inductive step, assume that for some n ≥ 5, that
n2 < 2n.  Then we have that

 

     (n + 1)2 = n2 + 2n + 1
 

Since n ≥ 5, we have
 

  (n + 1)2 = n2 + 2n + 1
< n2 + 2n + n (since 1 < 5 ≤ n)
= n2 + 3n
< n2 + n2 (since 3n < 5n ≤ n2)
= 2n2

 

So (n + 1)2 < 2n2.  Now, by our inductive hypothesis, we
know that n2 < 2n.  This means that

 

       (n + 1)2 < 2n2 (from above)
< 2(2n) (by the inductive hypothesis)
= 2n + 1

 

Completing the induction. ■
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Why is this Legal?

● Let P(n) be “Either n < 5 or n2 < 2n.”
● P(0) is trivially true.
● P(1) is trivially true, so P(0) → P(1)
● P(2) is trivially true, so P(1) → P(2)
● P(3) is trivially true, so P(2) → P(3)
● P(4) is trivially true, so P(3) → P(4)
● We explicitly proved P(5), so P(4) → P(5)
● For any n ≥ 5, we explicitly proved that P(n) → P(n + 1).
● Thus P(0) and for any n ∈ ℕ, P(n) → P(n + 1), so by 

induction P(n) is true for all natural numbers n.



  

Induction Starting at k

● To prove that P(n) is true for all natural 
numbers greater than or equal to k:
● Show that P(k) is true.
● Show that for any n ≥ k, that

P(n) → P(n + 1).
● Conclude P(k) holds for all natural numbers 

greater than or equal to k.

● You don't need to justify why it's okay to 
start from k.



  

An Important Observation



  

One Major Catch

0 1 2 3 4 5 6 7 8

In an inductive proof, to 
prove P(5), we can only assume 
P(4).  We cannot rely on any 

of our earlier results!

In an inductive proof, to 
prove P(5), we can only assume 
P(4).  We cannot rely on any 

of our earlier results!



  

Strong Induction



  

The principle of strong induction states 
that if for some property P(n), we have that

P(0) is true

and

For any n ∈ ℕ with n ≠ 0,
if P(n') is true for all n' < n, then

P(n) is true

then

For any n ∈ ℕ, P(n) is true.

Assume that P(n) holds 
for all natural numbers 

smaller than n.

Assume that P(n) holds 
for all natural numbers 

smaller than n.



  

Using Strong Induction

0 1 2 3 4 5 6 7 8



  

Induction and Dominoes



  

Strong Induction and Dominoes



  

Weak and Strong Induction

● Weak induction (regular induction) is 
good for showing that some property 
holds by incrementally adding in one new 
piece.

● Strong induction is good for showing 
that some property holds by breaking a 
large structure down into multiple small 
pieces.



  

Proof by Strong Induction

● State that you are attempting to prove something 
by strong induction.

● State what your choice of P(n) is.
● Prove the base case:

● State what P(0) is, then prove it.

● Prove the inductive step:
● State that you assume for all 0 ≤ n' < n, that P(n') is 

true.
● State what P(n) is. (this is what you're trying to prove)
● Go prove P(n).



  

Application: Binary Numbers



  

Binary Numbers

● The binary number system is base 2.
● Every number is represented as 1s and 0s encoding 

various powers of two.
● Examples:

● 1002 = 1 × 22 + 0 × 21 + 0 × 20 = 4

● 110112 = 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 27

● Enormously useful in computing; almost all 
computers do computation on binary numbers.

● Question: How do we know that every natural 
number can be written in binary?



  

Justifying Binary Numbers

● To justify the binary representation, we will 
prove the following result:

Every natural number n
can be expressed as the sum

of distinct powers of two.
● This says that there's at least one way to 

write a number in binary; we'd need a 
separate proof to show that there's exactly 
one way to do it.

● So how do we prove this?



  

One Proof Idea

16

0

8 2 1



  

General Idea

● Repeatedly subtract out the largest 
power of two less than the number.

● Can't subtract 2n twice for any n; 
otherwise, you could have subtracted 2n+1.

● Eventually, we reach 0; the number is 
then the sum of the powers of two that 
we subtracted.

● How do we formalize this as a proof?



  

Theorem: Every n ∈ ℕ is the sum of distinct powers of two.

Proof: By strong induction.  Let P(n) be “n is the sum of distinct powers of
two.”  We prove that P(n) is true for all n ∈ ℕ.

As our base case, we prove P(0), that 0 is the sum of distinct powers
of 2.  Since the empty sum of no powers of 2 is equal to 0, P(0) holds.

For the inductive step, assume that for some nonzero n ∈ ℕ, that for
any n' ∈ ℕ where 0 ≤ n' < n, that P(n') holds and n' is the sum of
distinct powers of two.  We prove P(n), that n is the sum of distinct
powers of two.

 

Let 2k be the greatest power of two such that 2k ≤ n.  Consider n – 2k.  
Since 2k ≥ 1 for any natural number k, we know that n – 2k < n.  Since
2k ≤ n, we know 0 ≤ n – 2k.  Thus, by our inductive hypothesis, n – 2k

is the sum of distinct powers of two.  If S be the set of these powers
of two, then n is the sum of these powers of two and 2k.

 

If we can show that 2k ∉ S, we will have that n is the sum of distinct
powers of two (namely, the elements of S and 2k).  Then P(n) will hold,
completing the induction.

 

We show 2k ∉ S by contradiction; assume that 2k ∈ S. Since 2k ∈ S and
the sum of the powers of two in S is n – 2k, this means that 2k ≤ n – 2k.
Thus 2k + 2k ≤ n, so 2k + 1 ≤ n.  This contradicts that 2k is the largest
power of two no greater than n.  We have reached a contradiction, so
our assumption was wrong and 2k ∉ S, as required. ■

Notice the stronger version of 
the induction hypothesis.  

We're now showing that P(n') is 
true for all natural numbers in 
the range 0 ≤ n' < n.  We'll 

use this fact later on.
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Application: Continued Fractions



  

Continued Fractions
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Continued Fractions

● A continued fraction is an expression of the form

● Formally, a continued fraction is either
● An integer n, or
● n + 1 / F, where n is an integer and F is a continued fraction.

● Continued fractions have numerous applications in 
number theory and computer science.

● (They're also really fun to write!)

a1+
1

a2+
1

a3+
1

...+
1
an



  

Fun with Continued Fractions

● Every rational number, including negative 
rational numbers, has a continued fraction 
representation.

● Harder result: every irrational number has an 
(infinite) continued fraction representation.

● Even harder result: If we truncate an infinite 
continued fraction for an irrational number, we 
can get progressively better approximations of 
that number.



  

π as a Continued Fraction
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1+
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1
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Approximating π

π=3+
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3 = 3.0000...

And he made the Sea of cast bronze, ten cubits from 
one brim to the other; it was completely round.  [… A] 
line of thirty cubits measured its circumference. 

1 Kings 7:23, New King James Translation

And he made the Sea of cast bronze, ten cubits from 
one brim to the other; it was completely round.  [… A] 
line of thirty cubits measured its circumference. 

1 Kings 7:23, New King James Translation



  

Approximating π
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Approximating π
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Chinese mathematician 祖沖之 (Zu Chongzhi) 
discovered this approximation in the early fifth 
century; this was the best approximation of pi 

for over a thousand years.

Chinese mathematician 祖沖之 (Zu Chongzhi) 
discovered this approximation in the early fifth 
century; this was the best approximation of pi 

for over a thousand years.



  

Approximating π

π=3+
1

7+
1

15+
1

1+
1

292

3 = 3.0000...

22/7 = 3.142857...

336/106 = 3.1415094...

355/113 = 3.14159292...

103993/33102 = 3.1415926530...



  

More Continued Fractions
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The Ancient Greeks knew 
about this connection.  

They called this procedure 
anthyphairesis.
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An Interesting Continued Fraction
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An Interesting Continued Fraction

x=1+
1

1+
1

1+
1

1+
1

1+
1

1+
1

1+
1
1

1 / 1

2 / 1

3 / 2

5 / 3

8 / 5

13 / 8

21 / 13

34 / 21

Each fraction is 
the ratio of 
consecutive 
Fibonacci 
numbers!



  

The Golden Ratio

ϕ=
1+ √5

2
=1+

1

1+
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1+
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1+
1
...

ϕ≈1.61803399



  

The Golden Ratio



  

The Golden Spiral



  

How do we prove all rational numbers
have continued fractions?



  

Constructing a Continued Fraction
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Constructing a Continued Fraction
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Constructing a Continued Fraction
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9 > 7 > 2 > 1



  

The Division Algorithm

● For any integers a and b, with b > 0, there 
exists unique integers q and r such that

a = qb + r

and

0 ≤ r < b

● q is the quotient and r is the remainder.

● Given a = 11 and b = 4:      11 = 2·4 + 3
● Given a = -137 and b = 42:    -137 = -4·42 + 31



  

Theorem: Every rational has a continued fraction.
  

Proof: By strong induction.  Let P(d) be “any rational with denominator d
has a continued fraction.”  We prove that P(d) is true for all positive
natural numbers.  Since all rationals can be written with a positive
denominator, this proves that all rationals have continued fractions.

 

For our base case, we prove P(1), that any rational with denominator
1 has a continued fraction. Consider any rational with denominator 1;
let it be n / 1. Since n is a continued fraction and n = n / 1, P(1) holds.

 

For our inductive step, assume that for some d ∈ ℕ with d > 1, that
for any d' ∈ ℕ where 1 ≤ d' < d, that P(d') is true, so any rational with
denominator d' has a continued fraction.  We prove P(d) by showing
that any rational with denominator d has a continued fraction.

 

Take any rational with denominator d; let it be n / d.  Using the
division algorithm, write n = qd + r, where 0 ≤ r < d.  We consider
two cases:

 

Case 1: r = 0.  Then n = qd, so n / d = q. Then q is a continued
fraction for n / d.

 

Case 2: r ≠ 0.  Given that n = qd + r, we have                            .
Since 1 ≤ r < d, by our inductive hypothesis there is some
continued fraction for d / r; call it F.  Then q + 1 / F is a
continued fraction for n / d.

 

In either case, we find a continued fraction for n / d, so P(d) holds,
completing the induction. ■

n
d
=q+

r
d
=q+

1
d /r



  

For more on continued fractions:
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/cfINTRO.html

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/cfINTRO.html


  

Next Time

● Graphs and Relations
● Representing structured data.
● Categorizing how objects are connected.
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