Mathematical Induction

Part Two

The principle of mathematical

 induction states that if for some property $P(n)$, we have that$-P(0)$ is true
If it starts ...
and going ...

For any $n \in \mathbb{N}$, we have $P(n) \rightarrow P(n+1)^{\wedge}$
Then
... then it's
always true.
For any $n \in \mathbb{N}, P(n)$ is true.

Theorem: For any natural number $n, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
Proof: By induction. Let $P(n)$ be

$$
P(n) \equiv \sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

For our base case, we need to show $P(0)$ is true, meaning that

$$
\sum_{i=1}^{0} i=\frac{0(0+1)}{2}
$$

Since the empty sum is defined to be 0 , this claim is true.
For the inductive step, assume that for some $n \in \mathbb{N}$ that $P(n)$ holds, so

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

We need to show that $P(n+1)$ holds, meaning that

$$
\sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}
$$

To see this, note that

$$
\sum_{i=1}^{n+1} i=\sum_{i=1}^{n} i+(n+1)=\frac{n(n+1)}{2}+n+1=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}
$$

Thus $P(n+1)$ is true, completing the induction.

Induction in Practice

- Typically, a proof by induction will not explicitly state $P(n)$.
- Rather, the proof will describe $P(n)$ implicitly and leave it to the reader to fill in the details.
- Provided that there is sufficient detail to determine
- what $P(n)$ is,
- that $P(0)$ is true, and that
- whenever $P(n)$ is true, $P(n+1)$ is true, the proof is usually valid.

Theorem: For any natural number $n, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
Proof: By induction on n. For our base case, if $n=0$, note that

$$
\sum_{i=1}^{0} i=\frac{0(0+1)}{2}=0
$$

and the theorem is true for 0 .
For the inductive step, assume that for some n the theorem is true. Then we have that

$$
\sum_{i=1}^{n+1} i=\sum_{i=1}^{n} i+(n+1)=\frac{n(n+1)}{2}+n+1=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}
$$

so the theorem is true for $n+1$, completing the induction.

A Variant of Induction

n^{2} versus 2^{n}

$$
\begin{array}{ll}
0^{2}=0 & 2^{0}=1 \\
1^{2}=1 & 2^{1}=2 \\
2^{2}=4 & 2^{2}=4 \\
3^{2}=9 & 2^{3}=8 \\
4^{2}=16 & 2^{4}=16 \\
5^{2}=25 & 2^{5}=32 \\
6^{2}=36 & 2^{6}=64 \\
7^{2}=49 & 2^{7}=128 \\
8^{2}=64 & 2^{8}=256 \\
9^{2}=81 & 2^{9}=512 \\
10^{2}=100 & 2^{10}=1024
\end{array}
$$

n^{2} versus 2^{n}

$$
\begin{aligned}
& 0^{2}=0<2^{0}=1 \\
& 1^{2}=1<2^{1}=2 \\
& 2^{2}=4 \quad=2^{2}=4 \\
& 3^{2}=9>2^{3}=8 \\
& 4^{2}=16=2^{4}=16 \\
& 5^{2}=25<2^{5}=32 \\
& 6^{2}=36<2^{6}=64 \\
& 7^{2}=49<2^{7}=128 \\
& 8^{2}=64<2^{8}=256 \\
& 9^{2}=81<2^{9}=512 \\
& 10^{2}=100<2^{10}=1024
\end{aligned}
$$

n^{2} versus 2^{n}

$$
\begin{aligned}
& 0^{2}=0<2^{0}=1 \quad 2^{n} \text { is } \frac{\text { much }}{1^{2}=1} \quad<2^{1}=2 \quad \text { bigger here. } \\
& 2^{2}=4 \quad \text { Does the tret } \\
& 3^{2}=9 \quad 2^{2}=4 \quad 2^{3}=8 \\
& 4^{2}=16>2^{4}=16 \\
& 5^{2}=25<2^{5}=32 \\
& 6^{2}=36<2^{6}=64 \\
& 7^{2}=49<2^{7}=128 \\
& 8^{2}=64<2^{8}=256 \\
& 9^{2}=81<2^{9}=512 \\
& 10^{2}=100<2^{10}=1024
\end{aligned}
$$

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.

Proof: By induction on n.

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$.

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 \\
& <n^{2}+2 n+n \quad(\text { since } 1<5 \leq n)
\end{aligned}
$$

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 \\
& <n^{2}+2 n+n \quad(\text { since } 1<5 \leq n) \\
& =n^{2}+3 n
\end{aligned}
$$

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \\
& <n^{2}+n^{2} & & \left(\text { since } 3 n<5 n \leq n^{2}\right)
\end{aligned}
$$

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \\
& <n^{2}+n^{2} & & \left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& =2 n^{2} & &
\end{aligned}
$$

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& <n^{2}+n^{2} & & \\
& =2 n^{2} & &
\end{aligned}
$$

So $(n+1)^{2}<2 n^{2}$.

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& <n^{2}+n^{2} & & \\
& =2 n^{2} & &
\end{aligned}
$$

So $(n+1)^{2}<2 n^{2}$. Now, by our inductive hypothesis, we know that $n^{2}<2^{n}$.

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& <n^{2}+n^{2} & & \\
& =2 n^{2} & &
\end{aligned}
$$

So $(n+1)^{2}<2 n^{2}$. Now, by our inductive hypothesis, we know that $n^{2}<2^{n}$. This means that

$$
(n+1)^{2}<2 n^{2} \quad \text { (from above) }
$$

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& <n^{2}+n^{2} & & \\
& =2 n^{2} & &
\end{aligned}
$$

So $(n+1)^{2}<2 n^{2}$. Now, by our inductive hypothesis, we know that $n^{2}<2^{n}$. This means that

$$
\begin{aligned}
(n+1)^{2} & <2 n^{2} \\
& <2\left(2^{n}\right)
\end{aligned}
$$

(from above)
(by the inductive hypothesis)

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& <n^{2}+n^{2} & & \\
& =2 n^{2} & &
\end{aligned}
$$

So $(n+1)^{2}<2 n^{2}$. Now, by our inductive hypothesis, we know that $n^{2}<2^{n}$. This means that

$$
\begin{aligned}
(n+1)^{2} & <2 n^{2} \\
& <2\left(2^{n}\right) \\
& =2^{n+1}
\end{aligned}
$$

(from above)
(by the inductive hypothesis)

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& <n^{2}+n^{2} & & \\
& =2 n^{2} & &
\end{aligned}
$$

So $(n+1)^{2}<2 n^{2}$. Now, by our inductive hypothesis, we know that $n^{2}<2^{n}$. This means that

$$
\begin{aligned}
(n+1)^{2} & <2 n^{2} \\
& <2\left(2^{n}\right) \\
& =2^{n+1}
\end{aligned}
$$

(from above)
(by the inductive hypothesis)

Completing the induction.

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$, then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 & & \\
& <n^{2}+2 n+n & & (\text { since } 1<5 \leq n) \\
& =n^{2}+3 n & & \left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& <n^{2}+n^{2} & & \\
& =2 n^{2} & &
\end{aligned}
$$

So $(n+1)^{2}<2 n^{2}$. Now, by our inductive hypothesis, we know that $n^{2}<2^{n}$. This means that

$$
\begin{aligned}
(n+1)^{2} & <2 n^{2} \\
& <2\left(2^{n}\right) \\
& =2^{n+1}
\end{aligned}
$$

(from above)
(by the inductive hypothesis)

Completing the induction.

Theorem: For any natural number $n \geq 5, n^{2}<2^{n}$.
Proof: By induction on n. As a base case, if $n=5$ then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

Since $n \geq 5$, we have

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 \\
& <n^{2}+2 n+n \quad(\text { since } 1<5 \leq n) \\
& =n^{2}+3 n \\
& <n^{2}+n^{2} \quad\left(\text { since } 3 n<5 n \leq n^{2}\right) \\
& =2 n^{2} \quad
\end{aligned}
$$

So $(n+1)^{2}<2 n^{2}$. Now, by our inductive hypothesis, we know that $n^{2}<2^{n}$. This means that

$$
\begin{array}{rlrl}
(n+1)^{2} & <2 n^{2} & & (\text { from above } \\
& <2\left(2^{n}\right) \\
& =2^{n+1} & & \text { (by the inductive hypothesis) }
\end{array}
$$

Completing the induction. \square

Proof: By induction on n. As a base case, if $n=5$ then we have that $5^{2}=25<32=2^{5}$, so the claim holds.

For the inductive step, assume that for some $n \geq 5$, that $n^{2}<2^{n}$. Then we have that

$$
(n+1)^{2}=n^{2}+2 n+1
$$

So $(n+1)^{2}<2 n^{2}$. Now, by our inductive hypothesis, we know that $n^{2}<2^{n}$. This means that

Completing the induction. \square

Why is this Legal?

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$

Remember: $A \rightarrow B$ means
"whenever A is true, B is true" If B is always true, $A \rightarrow B$ is true for any A.

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$

Again, $A \rightarrow B$ is automatically true if B is always true.

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$
- For any $n \geq 5$, we explicitly proved that $P(n) \rightarrow P(n+1)$.

Why is this Legal?

- Let $P(n)$ be "Either $n<5$ or $n^{2}<2^{n}$."
- $P(0)$ is trivially true.
- $P(1)$ is trivially true, so $P(0) \rightarrow P(1)$
- $P(2)$ is trivially true, so $P(1) \rightarrow P(2)$
- $P(3)$ is trivially true, so $P(2) \rightarrow P(3)$
- $P(4)$ is trivially true, so $P(3) \rightarrow P(4)$
- We explicitly proved $P(5)$, so $P(4) \rightarrow P(5)$
- For any $n \geq 5$, we explicitly proved that $P(n) \rightarrow P(n+1)$.
- Thus $P(0)$ and for any $n \in \mathbb{N}, P(n) \rightarrow P(n+1)$, so by induction $P(n)$ is true for all natural numbers n.

Induction Starting at k

- To prove that $P(n)$ is true for all natural numbers greater than or equal to k :
- Show that $P(k)$ is true.
- Show that for any $n \geq k$, that $P(n) \rightarrow P(n+1)$.
- Conclude $P(k)$ holds for all natural numbers greater than or equal to k.
- You don't need to justify why it's okay to start from k.

An Important Observation

One Major Catch

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

One Major Catch

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

One Major Catch

$$
\begin{array}{l|l|l|l|l|l|l|l|l}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

One Major Catch

$$
\begin{array}{l|ll|l|l|l|l|l}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

One Major Catch

$$
\begin{array}{l|llllll|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array}
$$

One Major Catch

$$
\begin{array}{lllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

One Major Catch

0
1 23
4

5

6

7
8

In an inductive proof, to prove $P(5)$, we can only assume $P(4)$. We cannot rely on any of our earlier results:

Strong Induction

The principle of strong induction states that if for some property $P(n)$, we have that

$P(0)$ is true

and

For any $n \in \mathbb{N}$ with $\boldsymbol{n} \neq \mathbf{0}$, if $P\left(n^{\prime}\right)$ is true for all $n^{\prime}<n$, then $P(n)$ is true
then
For any $n \in \mathbb{N}, P(n)$ is true.

The principle of strong induction states

 that if for some property $P(n)$, we have that
$\boldsymbol{P}(0)$ is true

Assume that $P(n)$ holds for all natural numbers
and smaller than n.

For any $n \in \mathbb{N}$ with $n \neq 0$, if $P\left(n^{\prime}\right)$ is true for all $n^{\prime}<n$, then $P(n)$ is true
then
For any $n \in \mathbb{N}, P(n)$ is true.

Using Strong Induction

0
1
23
45
6
7
8

Using Strong Induction

0
1
23
$4 \quad 5$
6
7
8

Using Strong Induction

0
1
23
$4 \quad 5$
6
7
8

Using Strong Induction

0
1
23
$4 \quad 5$
6
7
8

Using Strong Induction

0
1
23
$4 \quad 5$
6
7
8

Using Strong Induction

0
1
2
3
45
6
7
8

Induction and Dominoes

Strong Induction and Dominoes

Weak and Strong Induction

- Weak induction (regular induction) is good for showing that some property holds by incrementally adding in one new piece.
- Strong induction is good for showing that some property holds by breaking a large structure down into multiple small pieces.

Proof by Strong Induction

- State that you are attempting to prove something by strong induction.
- State what your choice of $P(n)$ is.
- Prove the base case:
- State what $P(0)$ is, then prove it.
- Prove the inductive step:
- State that you assume for all $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ is true.
- State what $P(n)$ is. (this is what you're trying to prove)
- Go prove $P(n)$.

Application: Binary Numbers

Binary Numbers

- The binary number system is base 2 .
- Every number is represented as 1 s and 0 s encoding various powers of two.
- Examples:
- $100_{2}=1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=4$
- $11011_{2}=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=27$
- Enormously useful in computing; almost all computers do computation on binary numbers.
- Question: How do we know that every natural number can be written in binary?

Justifying Binary Numbers

- To justify the binary representation, we will prove the following result:

Every natural number n

can be expressed as the sum of distinct powers of two.

- This says that there's at least one way to write a number in binary; we'd need a separate proof to show that there's exactly one way to do it.
- So how do we prove this?

One Proof Idea

27

One Proof Idea

11

16

One Proof Idea

3

$16 \quad 8$

One Proof Idea

1

16	8	2

One Proof Idea

0

General Idea

- Repeatedly subtract out the largest power of two less than the number.
- Can't subtract 2^{n} twice for any n; otherwise, you could have subtracted 2^{n+1}.
- Eventually, we reach 0; the number is then the sum of the powers of two that we subtracted.
- How do we formalize this as a proof?

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two. Proof: By strong induction.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two."

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $\mathrm{P}(0)$, that 0 is the sum of distinct powers of 2 .

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $\mathrm{P}(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $\mathrm{P}(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two.

Notice the stronger version of
the induction hypothesis. Were now showing that $\boldsymbol{P}\left(\boldsymbol{n}^{\prime}\right)$ is true for all natural numbers in the range $\mathbf{0} \leq \boldsymbol{n}^{\prime}<\boldsymbol{n}$. We ${ }^{\prime} l l$ use this fact later on.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $\mathrm{P}(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.
Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$.
Here's the key step of the proof.
If we can show that
$0 \leq n-2^{k}<n$
then we can use the inductive hypothesis to claim that $\boldsymbol{n - 2} \mathbf{2}^{\boldsymbol{k}}$ is a sum of distinct powers of two.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{k}$.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{k}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two.

$$
\text { Hor the mauctive step, assume that for some nonzero } n \in \mathbb{N} \text {, that for }
$$

$$
\text { any } n^{\prime} \in \mathbb{N} \text { where } 0 \leq n^{\prime}<n \text {, that } P\left(n^{\prime}\right) \text { holds and } n^{\prime} \text { is the sum of }
$$ distinct powers of two.

$$
n-2^{k}<n
$$

$0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two.

> Here is where strong induction kicks in. We use the fact that any smaller number can be written as the sum of distinct powers of two to show that $\boldsymbol{n - 2 ^ { k }}$ can be written as the sum of distinct powers of two.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.

As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.

If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}).

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.
Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.
If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}). Then $P(n)$ will hold, completing the induction.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.
Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.
If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}). Then $P(n)$ will hold, completing the induction.
We show $2^{k} \notin S$ by contradiction; assume that $2^{k} \in S$.

VODAWC, ITEABDYOOLTVERBOOF SOOPUTA PROOFITYOUR PROOF SO TOU GIN PROVE WHILE YOU PROUE

We show $2^{k} \notin S$ by contradiction; assume that $2^{k} \in S$.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.
Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.
If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}). Then $P(n)$ will hold, completing the induction.
We show $2^{k} \notin S$ by contradiction; assume that $2^{k} \in S$. Since $2^{k} \in S$ and the sum of the powers of two in S is $n-2^{k}$, this means that $2^{k} \leq n-2^{k}$.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.
Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.
If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}). Then $P(n)$ will hold, completing the induction.
We show $2^{k} \notin S$ by contradiction; assume that $2^{k} \in S$. Since $2^{k} \in S$ and the sum of the powers of two in S is $n-2^{k}$, this means that $2^{k} \leq n-2^{k}$. Thus $2^{k}+2^{k} \leq n$

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.
Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.
If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}). Then $P(n)$ will hold, completing the induction.
We show $2^{k} \notin S$ by contradiction; assume that $2^{k} \in S$. Since $2^{k} \in S$ and the sum of the powers of two in S is $n-2^{k}$, this means that $2^{k} \leq n-2^{k}$. Thus $2^{k}+2^{k} \leq n$, so $2^{k+1} \leq n$.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.
If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}). Then $P(n)$ will hold, completing the induction.
We show $2^{k} \notin S$ by contradiction; assume that $2^{k} \in S$. Since $2^{k} \in S$ and the sum of the powers of two in S is $n-2^{k}$, this means that $2^{k} \leq n-2^{k}$. Thus $2^{k}+2^{k} \leq n$, so $2^{k+1} \leq n$. This contradicts that 2^{k} is the largest power of two no greater than n.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.
If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}). Then $P(n)$ will hold, completing the induction.
We show $2^{k} \notin S$ by contradiction; assume that $2^{k} \in S$. Since $2^{k} \in S$ and the sum of the powers of two in S is $n-2^{k}$, this means that $2^{k} \leq n-2^{k}$. Thus $2^{k}+2^{k} \leq n$, so $2^{k+1} \leq n$. This contradicts that 2^{k} is the largest power of two no greater than n. We have reached a contradiction, so our assumption was wrong and $2^{k} \notin S$, as required.

Theorem: Every $n \in \mathbb{N}$ is the sum of distinct powers of two.
Proof: By strong induction. Let $\mathrm{P}(n)$ be " n is the sum of distinct powers of two." We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$.
As our base case, we prove $P(0)$, that 0 is the sum of distinct powers of 2 . Since the empty sum of no powers of 2 is equal to $0, \mathrm{P}(0)$ holds.

For the inductive step, assume that for some nonzero $n \in \mathbb{N}$, that for any $n^{\prime} \in \mathbb{N}$ where $0 \leq n^{\prime}<n$, that $P\left(n^{\prime}\right)$ holds and n^{\prime} is the sum of distinct powers of two. We prove $P(n)$, that n is the sum of distinct powers of two.

Let 2^{k} be the greatest power of two such that $2^{k} \leq n$. Consider $n-2^{k}$. Since $2^{k} \geq 1$ for any natural number k, we know that $n-2^{k}<n$. Since $2^{k} \leq n$, we know $0 \leq n-2^{\mathrm{k}}$. Thus, by our inductive hypothesis, $n-2^{k}$ is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2^{k}.
If we can show that $2^{k} \notin S$, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2^{k}). Then $P(n)$ will hold, completing the induction.
We show $2^{k} \notin S$ by contradiction; assume that $2^{k} \in S$. Since $2^{k} \in S$ and the sum of the powers of two in S is $n-2^{k}$, this means that $2^{k} \leq n-2^{k}$. Thus $2^{k}+2^{k} \leq n$, so $2^{k+1} \leq n$. This contradicts that 2^{k} is the largest power of two no greater than n. We have reached a contradiction, so our assumption was wrong and $2^{k} \notin S$, as required.

Application: Continued Fractions

Continued Fractions

1

1
$4+$ 1
$1+$
2

Continued Fractions

1

Continued Fractions

1

1
$4+$
3

2

Continued Fractions

1

Continued Fractions

1

2
 $4+$
 3

Continued Fractions

1

Continued Fractions

1
14
3

Continued Fractions

Continued Fractions

3

14

Continued Fractions

1
$3+$

$$
3+\frac{1}{1+\frac{1}{4+\frac{1}{2}}}
$$

Continued Fractions

1
$3+$

$$
1
$$

$3+$

$$
1
$$

$$
1+\square
$$

$$
4+\frac{1}{2}
$$

Continued Fractions

$$
3+\frac{1}{3+\frac{1}{1+\frac{1}{\frac{9}{2}}}}
$$

Continued Fractions

1
$3+$

$$
1
$$

$3+$

$$
1
$$

$$
1+
$$

9

2

Continued Fractions

Continued Fractions

1
$3+$

$$
3+\frac{1}{1+\frac{2}{9}}
$$

Continued Fractions

1
$3+$
1
$3+$
11

9

Continued Fractions

1
$3+$

$$
1
$$

$$
3+\longrightarrow
$$

11

9

Continued Fractions

1
$3+$

$$
3+\frac{9}{11}
$$

Continued Fractions

1
$3+$

Continued Fractions

1
$3+$
42
11

Continued Fractions

1

$3+$

$$
42
$$

$$
11
$$

Continued Fractions

$$
3+\frac{11}{42}
$$

Continued Fractions

$$
3+\frac{11}{42}
$$

Continued Fractions

137

42

Continued Fractions

- A continued fraction is an expression of the form

- Formally, a continued fraction is either
- An integer n, or
- $n+1 / F$, where n is an integer and F is a continued fraction.
- Continued fractions have numerous applications in number theory and computer science.
- (They're also really fun to write!)

Fun with Continued Fractions

- Every rational number, including negative rational numbers, has a continued fraction representation.
- Harder result: every irrational number has an (infinite) continued fraction representation.
- Even harder result: If we truncate an infinite continued fraction for an irrational number, we can get progressively better approximations of that number.

п аs a Continued Fraction

$$
\pi=3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{1+\frac{1}{292+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{\ldots}}}}}}}}}}
$$

Approximating п

Approximating п

$\pi=3$
3 = 3.0000...

Approximating п

$\pi=3$

$$
3=\underset{A}{3.0000 \ldots}
$$

> And he made the Sea of cast bronze, ten cubits from one brim to the other; it was completely round. [... A] line of thirty cubits measured its circumference.

1 Kings 7:23, New King James Translation

Approximating п

$$
\pi=3+\frac{1}{7} 3=3.0000 \ldots
$$

Approximating п

$$
\pi=3+\frac{1}{7} \quad 3=3.0000 \ldots
$$

Greek mathematician Archimedes knew of this approximation, circa 250 BCE

Approximating п

$$
\pi=3+\frac{1}{7+\frac{1}{15}} 3=3.0000 \ldots
$$

Approximating п

$$
\pi=3+\frac{1}{3+\frac{1}{15+\frac{1}{1}} \quad 3=3.0000 \ldots} \begin{aligned}
& 22 / 7=3.142857 \ldots \\
& 336 / 106=3.1415094 \ldots \\
& 355 / 113=3.14159292 . .
\end{aligned}
$$

Approximating п

$$
\pi=3+\frac{1}{3+\frac{1}{7+\frac{1}{15+\frac{1}{1}}} \begin{array}{l}
32 / 7=3.142857 \ldots \\
336 / 106=3.1415094 \ldots \\
355 / 113=3.14159292 \ldots
\end{array}}
$$

Chinese mathematician 祖沖之（Zu Chongzhi） discovered this approximation in the early fifth century；this was the best approximation of pi for over a thousand years．

Approximating п

$$
\pi=3+\frac{1}{3+3.0000 \ldots} \begin{aligned}
& 22 / 7=3.142857 \ldots \\
& 336 / 106=3.1415094 \ldots \\
& 355 / 113=3.14159292 \ldots \\
& 103993 / 33102=3.1415926530 \ldots
\end{aligned}
$$

More Continued Fractions

An Interesting Continued Fraction

An Interesting Continued Fraction

$$
x=1
$$

$1 / 1$

An Interesting Continued Fraction

$$
x=1+\frac{1}{1 .} \quad 1 / 1
$$

An Interesting Continued Fraction

$$
x=1+\frac{1}{1+\frac{1}{1}} 1 / 1
$$

An Interesting Continued Fraction

$$
x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}} \quad 1 / 1
$$

An Interesting Continued Fraction

$$
x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}} \begin{array}{ll}
1 / 1 \\
& 2 / 2 \\
& 5 / 3 \\
& 8 / 5
\end{array}
$$

An Interesting Continued Fraction

$$
x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1 .}}}}} \begin{array}{ll}
& 2 / 2 / 3 \\
& 8 / 5 \\
& 13 / 8
\end{array}
$$

An Interesting Continued Fraction

$$
x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}}}} \begin{array}{ll}
& 5 / 2 / 2 \\
& 13 / 5 \\
& 2 / 8 \\
& 21 / 13
\end{array}
$$

An Interesting Continued Fraction

$$
x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}}}}} \begin{array}{ll}
& 13 / 8 \\
& 2 / 1 / 2 \\
& 2 / 2 \\
& 34 / 21
\end{array}
$$

An Interesting Continued Fraction

$$
x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}}}}} \begin{aligned}
& \\
& \\
& \\
& \\
& 1 / 2 / 2 / 2 \\
& 21 / 2 \\
& \\
& \\
& 34 / 2
\end{aligned}
$$

Each fraction is
the ratio of consecutive

Fibonacci numbers:

The Golden Ratio

$$
\begin{gathered}
\varphi=\frac{1+\sqrt{5}}{2}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\cdots}}}} \\
\varphi \approx 1.61803399
\end{gathered}
$$

The Golden Ratio

The Golden Ratio

34

The Golden Ratio

The Golden Spiral

How do we prove all rational numbers have continued fractions?

Constructing a Continued Fraction

$\frac{7}{9}$

Constructing a Continued Fraction

$\frac{7}{9}=0+\frac{7}{9}$

Constructing a Continued Fraction

$$
\frac{7}{9}=0+\frac{1}{\frac{9}{7}}
$$

Constructing a Continued Fraction

Constructing a Continued Fraction

$$
\begin{aligned}
& \frac{7}{9}=0+\frac{1}{\frac{9}{7}} \\
& \frac{9}{7}=1+\frac{2}{7}
\end{aligned}
$$

Constructing a Continued Fraction

$$
\frac{7}{9}=0+\frac{1}{9}
$$

$$
\frac{9}{7}=1+\frac{1}{\frac{7}{2}}
$$

Constructing a Continued Fraction

$$
\frac{7}{9}=0+\frac{1}{9}
$$

$$
\frac{9}{7}=1+\frac{1}{\frac{7}{2}}
$$

$$
\frac{7}{2}
$$

Constructing a Continued Fraction

$$
\frac{7}{9}=0+\frac{1}{9}
$$

$$
\frac{9}{7}=1+\frac{1}{\frac{7}{2}}
$$

$$
\frac{7}{2}=3+\frac{1}{2}
$$

Constructing a Continued Fraction

$$
\frac{7}{9}=0+\frac{1}{\frac{9}{7}}
$$

$$
\frac{9}{7}=1+\frac{1}{\frac{7}{2}}
$$

$$
\frac{7}{2}=3+\frac{1}{2}
$$

Constructing a Continued Fraction

$$
\frac{7}{9}=0+\frac{1}{9}
$$

$$
\frac{9}{7}=1+\frac{1}{1}
$$

$$
3+\frac{1}{2}
$$

Constructing a Continued Fraction

$\frac{7}{9}=0+\frac{1}{\frac{9}{7}}$

$$
\frac{9}{7}=1+\frac{1}{3+\frac{1}{2}}
$$

Constructing a Continued Fraction

$$
\frac{7}{9}=0+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}
$$

Constructing a Continued Fraction

$\frac{7}{2}$
2
1

Constructing a Continued Fraction

$\frac{7}{2}$
2
1

Constructing a Continued Fraction

2

The Golden Ratio

The Golden Ratio

34

The Golden Ratio

The Division Algorithm

- For any integers a and b, with $b>0$, there exists unique integers \boldsymbol{q} and r such that

$$
a=\boldsymbol{q} b+\boldsymbol{r}
$$

and

$$
0 \leq r<b
$$

- \boldsymbol{q} is the quotient and \boldsymbol{r} is the remainder.
- Given $a=11$ and $b=4$:
$11=\mathbf{2} \cdot 4+3$
- Given $a=-137$ and $b=42: \quad-137=-\mathbf{4} \cdot 42+31$

Theorem: Every rational has a continued fraction.

Theorem: Every rational has a continued fraction.
Proof: By strong induction.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction."

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions.
For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$.
\square let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds
\square
\square denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.

Using the
division algorithm, write $n=q d+r$, where $0 \leq r<d$.

The division algorithm is the mathematically rigorous way to justify getting a quotient and a remainder.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$.

Case 2: $r \neq 0$.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$. Then $n=q d$, so $n / d=q$.

Case 2: $r \neq 0$.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$. Then $n=q d$, so $n / d=q$. Then q is a continued fraction for n / d.
Case 2: $r \neq 0$.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$. Then $n=q d$, so $n / d=q$. Then q is a continued fraction for n / d.
Case 2: $r \neq 0$. Given that $n=q d+r$, we have $\frac{n}{d}=q+\frac{r}{d}$

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds.
For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$. Then $n=q d$, so $n / d=q$. Then q is a continued fraction for n / d.
Case 2: $r \neq 0$. Given that $n=q d+r$, we have $\frac{n}{d}=q+\frac{r}{d}=q+\frac{1}{d / r}$.

Theorem: Every rational has a continued fraction.
Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds. For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$. Then $n=q d$, so $n / d=q$. Then q is a continued fraction for n / d.
Case 2: $r \neq 0$. Given that $n=q d+r$, we have $\frac{n}{d}=q+\frac{r}{d}=q+\frac{1}{d / r}$.
Since $1 \leq r<d$, by our inductive hypothesis there is some continued fraction for d / r; call it F.
for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction.

We use that $\boldsymbol{r}<\boldsymbol{d}$ to justify using the inductive hypothesis.
since our induction starts at 1, we also have to show that $r \geq 1$. Otherwise we might be out of the range of where the inductive hypothesis holds.

Since $1 \leq r<d$, by our inductive hypothesis there is some continued fraction for d / r; call it F.

Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds. For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$. Then $n=q d$, so $n / d=q$. Then q is a continued fraction for n / d.
Case 2: $r \neq 0$. Given that $n=q d+r$, we have $\frac{n}{d}=q+\frac{r}{d}=q+\frac{1}{d / r}$.
Since $1 \leq r<d$, by our inductive hypothesis there is some continued fraction for d / r; call it F. Then $q+1 / F$ is a continued fraction for n / d.

Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds. For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$. Then $n=q d$, so $n / d=q$. Then q is a continued fraction for n / d.
Case 2: $r \neq 0$. Given that $n=q d+r$, we have $\frac{n}{d}=q+\frac{r}{d}=q+\frac{1}{d / r}$.
Since $1 \leq r<d$, by our inductive hypothesis there is some continued fraction for d / r; call it F. Then $q+1 / F$ is a continued fraction for n / d.
In either case, we find a continued fraction for n / d, so $P(d)$ holds, completing the induction.

Theorem: Every rational has a continued fraction.

Proof: By strong induction. Let $P(d)$ be "any rational with denominator d has a continued fraction." We prove that $P(d)$ is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove $P(1)$, that any rational with denominator 1 has a continued fraction. Consider any rational with denominator 1; let it be $n / 1$. Since n is a continued fraction and $n=n / 1, P(1)$ holds. For our inductive step, assume that for some $d \in \mathbb{N}$ with $d>1$, that for any $d^{\prime} \in \mathbb{N}$ where $1 \leq d^{\prime}<d$, that $P\left(d^{\prime}\right)$ is true, so any rational with denominator d^{\prime} has a continued fraction. We prove $P(d)$ by showing that any rational with denominator d has a continued fraction.
Take any rational with denominator d; let it be n / d. Using the division algorithm, write $n=q d+r$, where $0 \leq r<d$. We consider two cases:

Case 1: $r=0$. Then $n=q d$, so $n / d=q$. Then q is a continued fraction for n / d.
Case 2: $r \neq 0$. Given that $n=q d+r$, we have $\frac{n}{d}=q+\frac{r}{d}=q+\frac{1}{d / r}$.
Since $1 \leq r<d$, by our inductive hypothesis there is some continued fraction for d / r; call it F. Then $q+1 / F$ is a continued fraction for n / d.
In either case, we find a continued fraction for n / d, so $P(d)$ holds, completing the induction.

For more on continued fractions:

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/cfINTRO.html

Next Time

- Graphs and Relations
- Representing structured data.
- Categorizing how objects are connected.

