
  

Mathematical Induction



  

A Note to CS106B Students

● Since CS106B and CS103 overlap, I'll be 
repeating the last 15 minutes of lecture 
every M/W/F from 4:15ish to 4:30ish in 
my office (Gates 178).

● Stop by if you're interested!



  

Everybody – do the wave!



  

The Wave

● If done properly, everyone will eventually 
end up joining in.

● Why is that?
● Someone (me!) started everyone off.
● Once the person before you did the wave, 

you did the wave.



  

The principle of mathematical 
induction states that if for some property 

P(n), we have that

P(0) is true

and

For any n ∈ ℕ, we have P(n) → P(n + 1)

Then

For any n ∈ ℕ, P(n) is true.

If it starts … … and it keeps 
going …

… then it's 
always true.



  

Another Example of Induction



  



  

Human Dominoes

● Everyone (except that last guy) 
eventually fell over.

● Why is that?
● Someone fell over.
● Once someone fell over, the next person fell 

over as well.



  

The principle of mathematical 
induction states that if for some property 

P(n), we have that

P(0) is true

and

For any n ∈ ℕ, we have P(n) → P(n + 1)

Then

For any n ∈ ℕ, P(n) is true.



  

Induction, Intuitively

● It's true for 0.
● Since it's true for 0, it's true for 1.
● Since it's true for 1, it's true for 2.
● Since it's true for 2, it's true for 3.
● Since it's true for 3, it's true for 4.
● Since it's true for 4, it's true for 5.
● Since it's true for 5, it's true for 6.
● …



  

Proof by Induction

● Suppose that you want to prove that some 
property P(n) holds of all natural numbers.  
To do so:
● Prove that P(0) is true.

– This is called the basis or the base case.
● Prove that for all n ∈ ℕ, that if P(n) is true, then 

P(n + 1) is true as well.
– This is called the inductive step.
– P(n) is called the inductive hypothesis.

● Conclude by induction that P(n) holds for all n.



  

Some Sums

1 = 1
1 + 2 = 3
1 + 2 + 3 = 6
1 + 2 + 3 + 4 = 10
1 + 2 + 3 + 4 + 5 = 15



  

1 + 2 + … + (n – 1) + n                

n

n + 1

= n(n + 1) / 2



  

Some Sums

1 = 1 
1 + 2 = 3 
1 + 2 + 3 = 6 
1 + 2 + 3 + 4 = 10 
1 + 2 + 3 + 4 + 5 = 15 



  

Some Sums

1 = 1 = 1(1 + 1) / 2
1 + 2 = 3 = 2(2 + 1) / 2
1 + 2 + 3 = 6 = 3(3 + 1) / 2
1 + 2 + 3 + 4 = 10 = 4(4 + 1) / 2
1 + 2 + 3 + 4 + 5 = 15 = 5(5 + 1) / 2



  

Theorem: The sum of the first n positive natural numbers is
 n(n + 1)/2.

Proof: By induction.  Let P(n) be “the sum of the first n positive natural
numbers is n(n + 1) / 2.”  We show that P(n) is true for all n ∈ ℕ.

 
For our base case, we need to show P(0) is true, meaning that the
sum of the first zero positive natural numbers is 0(0 + 1)/2.  Since
the sum of the first zero positive natural numbers is 0 = 0(0 + 1)/2,
P(0) is true.

 
For the inductive step, assume that for some n ∈ ℕ that P(n) holds,
meaning that 1 + 2 + … + n = n(n + 1) / 2.  We need to show that
P(n + 1) holds, meaning that the sum of the first n + 1 natural
numbers is (n + 1)(n + 2)/2.

Consider the sum of the first n + 1 positive natural numbers.  This
is the sum of the first n positive natural numbers, plus n + 1.  By
the inductive hypothesis, this is given by

 
Thus P(n + 1) holds when P(n) is true, so P(n) holds for all n ∈ ℕ. ■
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The goal of this step is to prove

“For any n ∈ ℕ, if P(n), then P(n + 1)”

To do this, we'll choose an arbitrary n, assume 
that P(n) holds, then try to prove P(n + 1).
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Structuring a Proof by Induction
● State that your proof works by induction.
● State your choice of P(n).
● Prove the base case:

● State what P(0) is, then prove it using any technique you'd 
like.

● Prove the inductive step:
● State that for some arbitrary n ∈ ℕ that you're assuming 

P(n) and mention what P(n) is.
● State that you are trying to prove P(n + 1) and what 

P(n + 1) means.
● Prove P(n + 1) using any technique you'd like.

● This is very rigorous, so as we gain more familiarity 
with induction we will start being less formal in our 
proofs.



  

Notation: Summations

● Instead of writing 1 + 2 + 3 + … + n, we 
write

 

∑
i=1

n

i
Sum from i = 1 to n

of i



  

Summation Examples

∑
i=1

5

i=1+ 2+ 3+ 4+ 5=15

∑
i=1

3

i2=12
+ 22

+ 32
=1+ 4+ 9=14

∑
i=0

2

(i2−i)=(02
−0)+ (12

−1)+ (22
−2)=2



  

The Empty Sum

● A sum of no numbers is called the empty 
sum and is defined to be zero.

● Examples:

∑
i=1

0

2i=0 ∑
i=0

−1

i=0∑
i=137

42

i i=0



  

Theorem: For any natural number n, 
Proof: By induction.  Let P(n) be
 

P(n) ≡                  
 

For our base case, we need to show P(0) is true, meaning that 
 

Since the empty sum is defined to be 0, this claim is true.

For the inductive step, assume that for some n ∈ ℕ that P(n)
holds, so

 

We need to show that P(n + 1) holds, meaning that
 

To see this, note that
 

Thus P(n + 1) is true, completing the induction. ■

∑
i=1

n

i=
n(n+ 1)
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Sums of Powers of Two

(empty sum) = 0 
20 = 1 = 1 
20 + 21 = 1 + 2 = 3  
20 + 21 + 22 = 1 + 2 + 4 = 7  
20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15  



  

Sums of Powers of Two

(empty sum) = 0 = 20 - 1
20 = 1 = 1 = 21 – 1
20 + 21 = 1 + 2 = 3 = 22 – 1
20 + 21 + 22 = 1 + 2 + 4 = 7 = 23 – 1
20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15 = 24 – 1



  

Sums of Powers of Two

(empty sum) = 0 = 20 - 1
20 = 1 = 1 = 21 – 1
20 + 21 = 1 + 2 = 3 = 22 – 1
20 + 21 + 22 = 1 + 2 + 4 = 7 = 23 – 1
20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15 = 24 – 1

∑
i=0
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A Quick Aside

● This result helps explain the range of 
numbers that can be stored in an int.

● If you have an unsigned 32-bit integer, 
the largest value you can store is given 
by 1 + 2 + 4 + 8 + … + 231 = 232 – 1.

● This formula for sums of powers of two 
has many other uses as well.  We'll see 
one in a week.
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A Brief Interlude for Announcements



  

Problem Session Tonight

● Problem Session tonight, 7:00 – 7:50PM 
in 380-380X

● Purely optional, but should be a lot of 
fun!

● We'll try to get it recorded and posted 
online as soon as possible.



  

Back to our regularly
scheduled programming...



  

Back to our regularly
scheduled programming...

math



  

How Not To Induct



  

An Incorrect Proof

Theorem: For any n ∈ ℕ,

Proof: Let P(n) be defined as  P(n) ≡                                  

Now, assume that for some n, P(n) holds, so

We want to show that P(n + 1) is true, which means that we want to show

To see this, note that

So P(n + 1) holds, completing the induction. ■
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When proving P(n) is true
for all n ∈ ℕ by induction,

make sure to show the base case!

Otherwise, your argument is invalid!



  

The Counterfeit Coin Problem,
Take Two



  

Problem Statement

● You are given a set of three seemingly 
identical coins, two of which are real and 
one of which is counterfeit.

● The counterfeit coin weighs more than 
the rest of the coins.

● You are given a balance.  Using only one 
weighing on the balance, find the 
counterfeit coin.
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A Harder Problem

● You are given a set of nine seemingly 
identical coins, eight of which are real 
and one of which is counterfeit.

● The counterfeit coin weighs more than 
the rest of the coins.

● You are given a balance.  Using only two 
weighings on the balance, find the 
counterfeit coin.
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Now we have one weighing to find 
the counterfeit out of these three
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Now we have one weighing to find 
the counterfeit out of these three



  

If we have n weighings on the scale, what 
is the largest number of coins out of which 

we can find the counterfeit?



  

A Pattern

● If we have no weighings, how many coins 
can we have while still being able to find 
the counterfeit?
● One coin, since that coin has to be the 

counterfeit!

● If we have one weighing, we can find the 
counterfeit out of three coins.

● If we have two weighings, we can find 
the counterfeit out of nine coins.



  

So far, we have

1, 3, 9 = 30, 31, 32

Does this pattern continue?



  

Theorem: Given n weighings, we can detect which of 3n coins is counterfeit.
  

Proof: By induction.  Let P(n) be “Given n weighings, we can detect which of the
3n coins is counterfeit.”  We prove that P(n) is true for all n ∈ ℕ.

  

For the base case, we show P(0) holds, which means that we can detect
which of 30 = 1 coins is counterfeit in no weighings.  This is trivial – if
there is only one coin, it must be the counterfeit.

  

For the inductive step, suppose that for some n, P(n) holds, so we can
detect which of 3n coins is counterfeit using n weighings.  We will show
P(n + 1) holds, meaning we can detect which of 3n+1 coins is counterfeit
using n + 1 weighings.

  

Given 3n+1 coins, split them into three equal groups of size 3n; call the
groups A, B, and C.  Put the coins in set A on one side of the scale and the
coins in set B on the other side.  There are three cases to consider:

  

  Case 1: Side A is heavier.  Then the counterfeit coin must be in group A.
  Case 2: Side B is heavier. Then the counterfeit coin must be in group B.
  Case 3: The scale is balanced.  Then the counterfeit coin must be in

  group C, since it isn't in groups A or B.
  

In any case, we can use one weighing to find a group of 3n coins that
contains the counterfeit coin.  By the inductive hypothesis, we can use n
more weighings to find which of these 3n coins is counterfeit.  Combined
with our original weighing, this means that we can find the counterfeit of
3n + 1 coins in n + 1 weighings.  Thus P(n + 1) holds, completing the
induction. ■
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The MU Puzzle



  

Gödel, Escher Bach:
An Eternal Golden Braid

● Pulitzer-Prize winning 
book exploring recursion, 
computability, and 
consciousness.

● Written by Douglas 
Hofstadter, computer 
scientist at Indiana 
University.

● A great (but dense!) read.



  

The MU Puzzle

● Begin with the string MI.

● Repeatedly apply one of the following 
operations:
● Double the contents of the string after the M: for 

example, MIIU becomes MIIUIIU or MI becomes 
MII.

● Replace III with U: MIIII becomes MUI or MIU
● Append U to the string if it ends in I: MI becomes 
MIU

● Remove any UU: MUUU becomes MU

● Question: How do you transform MI to MU?



  

A) Double the contents of 
the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.



  

MI

A) Double the contents of 
the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.



  

MI

MII

A) Double the contents of 
the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

       A



  

MI

MII

MIIII
A) Double the contents of 

the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

       A

       A



  

MI

MII

MIIII
A) Double the contents of 

the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

MIIIIU

       A

       A

       D



  

MI

MII

MIIII
A) Double the contents of 

the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

MIIIIU

MUIU

       A

       A

       D

       B



  

MI

MII

MIIII
A) Double the contents of 

the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

MIIIIU

MUIU

MUIUUIU

       A

       A

       D

       B

       A



  

MI

MII

MIIII
A) Double the contents of 

the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

MIIIIU

MUIU

MUIUUIU

MUIIU

       A

       A

       D

       B

       A

       C



  

A) Double the contents of 
the string after M.

B) Replace III with U.

C) Remove UU

D) Append U if the string 
ends in I.

Try It!

Starting with MI, apply these
operations to make MU:



  

Not a single person in this room 
was able to solve this puzzle.

Are we even sure that there is a solution?



  

Counting I's



  

MI

MII

MIIII

MIIIIU

MIIIIUIIIIU

MIIIIUUIU

MIIIIUUIUIIIIUUIU

MUIUUIUIIIIUUIU

Counting I's
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MI

MII

MIIII

MIIIIU

MIIIIUIIIIU

MIIIIUUIU

MIIIIUUIUIIIIUUIU

1

2

4

4

8

5

10

MUIUUIUIIIIUUIU

Counting I's
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MI

MII

MIIII

MIIIIU

MIIIIUIIIIU

MIIIIUUIU

MIIIIUUIUIIIIUUIU

1

2

4

4

8

5

10

None of 
these are 

multiples of 
three...

MUIUUIUIIIIUUIU

Counting I's



  

The Key Insight

● Initially, the number of I's is not a 
multiple of three.

● To make MU, the number of I's must end 
up as a multiple of three.

● Can we ever make the number of I's a 
multiple of three?



  

Lemma: Beginning with MI and applying any legal sequence of moves, the 
number of I's is never a multiple of 3.
 

Proof: By induction.  Let P(n) be “After making n legal moves starting with string 
MI, the number of I's is not a multiple of 3.”  We prove P(n) holds for all n ∈ ℕ.
 

As a base case, to prove P(0), we show that after making no moves the number of 
I's is not a multiple of 3.  MI has one I in it, which is not a multiple of 3.
  

For the inductive step, assume for some n ∈ ℕ that P(n) holds and that after any 
sequence of n operations, the number of I's is not a multiple of 3.  We prove
P(n + 1), that after n + 1 operations, the number of I's is not a multiple of 3.
 

To see this, note that any sequence of n + 1 operations is formed from a sequence 
of n operations followed by one final operations.  By the inductive hypothesis, 
after the first n operations, the number of I's is not a multiple of 3.  Thus before 
performing the (n + 1)st operation, the number of I's either has the form 3k + 1 
or 3k + 2 for some k ∈ ℕ.  Now, consider the (n + 1)st operation:
 

Case 1: It's “double the string after the M.”  Then we either end up with either
2(3k + 1) = 6k + 2 = 3(2k) + 2   or   2(3k + 2) = 6k + 4 = 3(2k + 1) + 1
copies of I, neither of which is a multiple of 3.

 

Case 2: It's “delete UU” or “append U.”  Then the number of I's is unchanged.
 

Case 3: It's “delete III.”  Then we either go from 3k + 1 to
3k + 1 – 3 = 3(k – 1) + 1 I's, or from 3k + 2 to 3k + 2 – 3 = 3(k – 1) + 2
I's, neither of which is a multiple of 3.

 

Thus any sequence of n + 1 moves starting with MI ends with the number of I's 
not a multiple of three.  Thus P(n + 1) holds, completing the induction. ■
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Theorem: The MU puzzle has no solution.

Proof: By contradiction; assume it has a
solution.  By our lemma, the number
of I's in the final string must not be
a multiple of 3.  However, for the
solution to be valid, the number of
I's must be 0, which is a multiple of
3.  We have reached a contradiction,
so our assumption was wrong and
the MU puzzle has no solution. ■



  

Algorithms and Loop Invariants

● The proof we just made had the form
● “If P is true before we perform an action, it is true 

after we perform an action.”

● We could therefore conclude that after any series 
of actions of any length, if P was true beforehand, 
it is true now.

● In algorithmic analysis, this is called a loop 
invariant.

● Proofs on algorithms often use loop invariants to 
reason about the behavior of algorithms.
● Take CS161 for more details!
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