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Announcements

● Problem Set 1 out.
● Checkpoint due Monday, October 1.

● Graded on a “did you turn it in?” basis.
● We will get feedback back to you with comments 

on your proof technique and style.
● The more an effort you put in, the more you'll get 

out.

● Remaining problems due Friday, October 5.
● Feel free to email us with questions!



  

Submitting Assignments

● You can submit assignments by
● handing them in at the start of class,
● dropping it off in the filing cabinet near Keith's office 

(details on the assignment handouts), or
● emailing the submissions mailing list at 

cs103-aut1213-submissions@lists.stanford.edu and 
attaching your solution as a PDF.

● Late policy:
● Three 72-hour “late days.”
● Can use at most one per assignment.
● No work accepted more than 72 hours after due date.

mailto:cs103-aut1213-submissions@lists.stanford.edu


  

Lecture Videos

http://class.stanford.edu/cs103/Fall2012/videos 

http://class.stanford.edu/cs103/Fall2012/videos
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Office hours start today.

Schedule available on the course website.



  

Friday Four Square

● Good snacks!
● Good company!
● Good game!
● Good fun!
● Today at 4:15 

in front of 
Gates.

Don't be this guy!



  

Outline for Today

● Logical Implication
● What does “If P, then Q” mean?

● Proof by Contradiction
● The basic method.
● Contradictions and implication.
● Contradictions and quantifiers.

● Proof by Contrapositive
● The basic method.
● An interesting application.



  

Logical Implication



  

Implications

● An implication is a statement of the 
form 

If P, then Q.
● We write “If P, then Q” as P → Q.

● Read: “P implies Q.”

● When P → Q, we call P the antecedent 
and Q the consequent.



  

What does Implication Mean?

● The statement P → Q means exactly the 
following:

Whenever P is true,
Q must be true as well.

● For example:
● n is even → n2 is even.
● (A ⊆ B and B ⊆ C) → A ⊆ C



  

What does Implication Not Mean?
● P → Q does not mean that whenever Q is true, P is true.

● “If you are a Stanford student, you wear cardinal” does not 
mean that if you wear cardinal, you are a Stanford student.

● P → Q does not say anything about what happens if P is 
false.

● “If you hit another skier, you're gonna have a bad time” 
doesn't mean that if you don't hit other skiers, you're gonna 
to have a good time.

● Vacuous truth: If P is never true, then P → Q is always true.

● P → Q does not say anything about causality.

● “If I want math to work, then 2 + 2 = 4” is true because any 
time that I want math to work, 2 + 2 = 4 already was true.

● “If I don't want math to work, then 2 + 2 = 4” is also true, 
since whenever I don't want math to work, 2 + 2 = 4 is true.



  

Implication, Diagrammatically

Times when Q is true

Times when P is true



  

Implication, Diagrammatically

Times when Q is true

Times when P is true

Any time P is 
true, Q is 

true as well.



  

Implication, Diagrammatically

Times when Q is true

Times when P is true

Any time P is 
true, Q is 

true as well.

Any time P 
isn't true, Q 
may or may 
not be true.



  

Alternative Forms of Implication

● All of the following are different ways of saying 
P → Q:

If P, then Q.

P implies Q.

P only if Q.

Q whenever P.

P is sufficient for Q.

Q is necessary for P.
● Why?



  

When P Does Not Imply Q

● What would it mean for P → Q to be false?
● Answer: There must be some way for P to 

be true and Q to be false.
● P → Q means “any time P is true, Q is 

true.”
● The only way to disprove this is to show that 

there is some way for P to be true and Q to be 
false.

● To prove that P → Q is false, find an 
example of where P is true and Q is false.



  

P → Q is False

Set of where Q is true

Set of 
where P 
is true



  

P → Q is False

Set of where Q is true

Set of 
where P 
is true

P can be 
true without 
Q being 

true as well



  

A Common Mistake

● To show that P → Q is false, it is not sufficient 
to find a case where P is false and Q is false.



  

A Common Mistake

● To show that P → Q is false, it is not sufficient 
to find a case where P is false and Q is false.

Set of where Q is true

Set of where P is 
true



  

A Common Mistake

● To show that P → Q is false, it is not sufficient 
to find a case where P is false and Q is false.

Set of where Q is true

Set of where P is 
true

Both P 
and Q are 

false



  

Proof by Contradiction



  

“When you have eliminated all which is 
impossible, then whatever remains, 

however improbable, must be the truth.”

- Sir Arthur Conan Doyle, The Adventure of the Blanched Soldier



  

Proof by Contradiction

● A proof by contradiction is a proof that 
works as follows:
● To prove that P is true, assume that P is not 

true.
● Based on the assumption that P is not true, 

conclude something impossible.
● Assuming the logic is sound, the only option 

is that the assumption that P is not true is 
incorrect.

● Conclude, therefore, that P is true.



  

Contradictions and Implications

● Suppose we want to prove that P → Q is 
true by contradiction.

● The proof will look something like this:
● Assume that P → Q is false.
● Using this assumption, derive a 

contradiction.
● Conclude that P → Q must be true.



  

Contradictions and Implications

● Suppose we want to prove that P → Q is 
true by contradiction.

● The proof will look something like this:
● Assume that P → Q is false.
● Using this assumption, derive a 

contradiction.
● Conclude that P → Q must be true.

What does 
this mean?



  

Contradictions and Implications

● Suppose we want to prove that P → Q is 
true by contradiction.

● The proof will look something like this:
● Assume that P is true and Q is false.
● Using this assumption, derive a 

contradiction.
● Conclude that P → Q must be true.



  

A Simple Proof by Contradiction

Theorem: If n2 is even, then n is even.
Proof: By contradiction; assume n2 is even but n is odd.  

       Since n is odd, n = 2k + 1 for some integer k.  

       Then n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

       Now, let m = 2k2 + 2k.  Then n2 = 2m + 1, so by
       definition n2 is odd.  But this is clearly impossible,
       since n2 is even.  

       We have reached a contradiction, so our assumption
       was false.  Thus if n2 is even, n is even as well. ■
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The three key pieces:

1. State that the proof is by contradiction.
2. State what the negation of the original statement is.
3. State you have reached a contradiction and what the 
contradiction entails.

You must include all three of these steps in your proofs!

The three key pieces:

1. State that the proof is by contradiction.
2. State what the negation of the original statement is.
3. State you have reached a contradiction and what the 
contradiction entails.

You must include all three of these steps in your proofs!



  

Biconditionals

● Combined with what we saw on Wednesday, we have 
proven

If n is even, n2 is even.

If n2 is even, n is even.
● We sometimes write this as

n is even if and only if n2 is even.
● This is often abbreviated

n is even iff n2 is even.

or as

n is even ↔ n2 is even
● This is called a biconditional.



  

P ↔ Q



  

P ↔ Q

Set where P 
is true



  

P ↔ Q

Set where P 
is true

Set where Q 
is true



  

Proving Biconditionals

● To prove P iff Q, you need to prove that
● P → Q, and
● Q → P.

● You may use any proof techniques you'd 
like when doing so.
● In our case, we used a direct proof and a 

proof by contradiction.

● Just make sure to prove both 
directions of implication!



  

Rational and Irrational Numbers



  

Rational and Irrational Numbers

● A rational number is a number r that can be 
written as

where
● p and q are integers,
● q ≠ 0, and
● p and q have no common divisors other than ±1.

● A number that is not rational is called irrational.

r=
p
q



  

Rational and Irrational Numbers

A rational number is a number r that can be 
written as

where

p and q are integers,
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A number that is not rational is called irrational.
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p
q



  

A Famous and Beautiful Proof
Theorem: √2 is irrational. 
Proof: By contradiction; assume √2is rational.  Then there exists
           integers p and q such that q ≠ 0, p / q = √ , and p and q have
           no common divisors other than 1 and -1.
 

           Since p / q = √2 and q ≠ 0, we have p = √2q, so p2 = 2q2.
 

           Since q2 is an integer and p2 = 2q2, we have that p2 is even.  By
                   our earlier result, since p2 is even, we know p is even.  Thus
                   there is an integer k such that p = 2k.
 

           Therefore, 2q2 = p2 = (2k)2 = 4k2, so q2 = 2k2.
 

           Since k2 is an integer and q2 = 2k2, we know q2 is even.  By our
                   earlier result, since q2 is even, we have that q is even.  But
           this means that both p and q have 2 as a common divisor.  This
           contradicts our earlier assertion that their only common
           divisors are 1 and -1.
 

           We have reached a contradiction, so our assumption was
           incorrect.  Consequently, √2 is irrational. ■

√2
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The three key pieces:

1. State that the proof is by contradiction.
2. State what the negation of the original statement is.
3. State you have reached a contradiction and what the 
contradiction entails.

You must include all three of these steps in your 
proofs!
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A Word of Warning

● To attempt a proof by contradiction, 
make sure that what you're assuming 
actually is the opposite of what you want 
to prove!

● Otherwise, your entire proof is invalid.



  

An Incorrect Proof

Theorem: For any natural number n, the sum of all 
natural numbers less than n is not equal to n.

Proof: By contradiction; assume that for any natural 
number n, the sum of all smaller positive integers is 
equal to n.  But this is clearly false, because 5 ≠ 1 + 
2 + 3 + 4 = 10.  We have reached a contradiction, so 
our assumption was false and the theorem must be 
true. ■
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The contradiction of the universal 
statement

For all x, P(x) is true.

is not

For all x, P(x) is false.
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A Terribly Flawed Proof
Theorem: There exists an integer n such that for 
every integer m, m ≤ n.

Proof: By contradiction; assume that there exists 
an integer n such that for every integer m, m > n. 

Since for any m, we have that m > n is true, it 
should be true when m = n – 1.  Thus n – 1 > n.  
But this is impossible, since n – 1 < n.

We have reached a contradiction, so our 
assumption was incorrect.  Thus there exists an 
integer n such that for every integer m, m ≤ n. ■
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A Terribly Flawed Proof
Theorem: There exists an integer n such that for 
every integer m, m ≤ n.

Proof: By contradiction; assume that there exists 
an integer n such that for every integer m, m > n. 

Since for any m, we have that m > n is true, it 
should be true when m = n – 1.  Thus n – 1 > n.  
But this is impossible, since n – 1 < n.

We have reached a contradiction, so our 
assumption was incorrect.  Thus there exists an 
integer n such that for every integer m, m ≤ n. ■
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The Story So Far



  

For CS106B Students

● I will be holding a recap session M/W/F 
from 4:15 – 4:30 in my office (Gates 178) 
to recap the last fifteen minutes of 
lecture.

● Feel free to stop on by!



  

Proof by Contrapositive
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The Contrapositive

● The contrapositive of “If P, then Q” is the 
statement “If not Q, then not P.”

● Example:
● “If I stored the cat food inside, then the raccoons 

wouldn't have stolen my cat food.”
● Contrapositive: “If the raccoons stole my cat food, 

then I didn't store it inside.”

● Another example:
● “If I had been a good test subject, then I would 

have received cake.”
● Contrapositive: “If I didn't receive cake, then I 

wasn't a good test subject.”



  

Notation

● Recall that we can write “If P, then Q” as 
P → Q.

● Notation: We write “not P” as ¬P.
● Examples:

● “If P is false, then Q is true:” ¬P → Q
● “Q is false whenever P is false:” ¬P → ¬Q

● The contrapositive of P → Q is ¬Q → ¬P.



  

Theorem: If ¬Q → ¬P, then P → Q.
Proof: By contradiction.  Assume that ¬Q → ¬P, but that
           P → Q is false.  Since P → Q is false, it must be true
           that P is true and ¬Q is true.  Since ¬Q is true and
           ¬Q → ¬P, we know that ¬P is true.  But this means
           that we have shown P and ¬P, which is impossible.
           We have reached a contradiction, so if ¬Q → ¬P,
           then P → Q. ■

An Important Result
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To show that P → Q, you may 
instead show that ¬Q → ¬P.

This is called a 
proof by contrapositive.

An Important Proof Strategy



  

Theorem: If n2 is even, then n is even.

Proof: By contrapositive; we prove that if n is
odd, then n2 is odd.  

Since n is odd, n = 2k + 1 for some
integer k. Then

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

Since (2k2 + 2k) is an integer, n2 is odd. ■
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Notice the structure of the 
proof.  We begin by 

announcing that it's a proof by 
contrapositive, then state the 
contrapositive, and finally 

prove it.
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An Incorrect Proof

Theorem: For any sets A and B,
if x ∉ A ∩ B, then x ∉ A.

Proof: By contrapositive; we show that
if x ∈ A ∩ B, then x ∈ A.

Since x ∈ A ∩ B, x ∈ A and x ∈ B.
Consequently, x ∈ A as required. ■
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Common Pitfalls

To prove P → Q by contrapositive, show 
that

¬Q → ¬P

Do not show that 

¬P → ¬Q

(Showing ¬P → ¬Q proves that Q → P, not 
the other way around!)
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The Pigeonhole Principle

● Suppose that you have n pigeonholes.
● Suppose that you have m > n pigeons.
● If you put the pigeons into the 

pigeonholes, some pigeonhole will have 
more than one pigeon in it.
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Theorem: Let m objects be distributed into n bins.  If
           m > n, then some bin contains at least two objects.

Proof: By contrapositive; we prove that if every bin
           contains at most one object, then m ≤ n.

           Let xi be the number of objects in bin i.  Since m is
           the number of total objects, we have that

           Since every bin has at most one object, xi ≤ 1 for
           all i.  Thus

           So m ≤ n, as required. ■

m = ∑
i=1

n

x i ≤ ∑
i=1

n

1 = n
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Using the Pigeonhole Principle

● The pigeonhole principle is an enormously 
useful lemma in many proofs.
● If we have time, we'll spend a full lecture on it 

in a few weeks.
● General structure of a pigeonhole proof:

● Find m objects to distribute into n buckets, 
with m > n.

● Using the pigeonhole principle, conclude that 
some bucket has at least two objects in it.

● Use this conclusion to show the desired result.



  

Some Simple Applications
● Any group of 367 people must have a pair of people that 

share a birthday.
● 366 possible birthdays (pigeonholes)
● 367 people (pigeons)

● Two people in San Francisco have the exact same number 
of hairs on their head.
● Maximum number of hairs ever found on a human head is no 

greater than 500,000.
● There are over 800,000 people in San Francisco.

● Each day, two people in New York City drink the same 
amount of water, to the thousandth of a fluid ounce.
● No one can drink more than 50 gallons of water each day.
● That's 6,400 fluid ounces.  This gives 6,400,000 possible 

numbers of thousands of fluid ounces.
● There are about 8,000,000 people in New York City proper.



  

Next Time

● Proof by Induction
● Proofs on sums, programs, algorithms, etc.
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