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What is a Proof?



  

Induction and Deduction

● In the sciences, much reasoning is done 
inductively.
● Conduct a series of experiments and find a rule that 

explains all the results.
● Conclude that there is a general principle explaining the 

results.
● Even if all data are correct, the conclusion might be 

incorrect.

● In mathematics, reasoning is done deductively.
● Begin with a series of statements assumed to be true.
● Apply logical reasoning to show that some conclusion 

necessarily follows.
● If all the starting assumptions are correct, the 

conclusion necessarily must be correct.



  

Structure of a Mathematical Proof

● Begin with a set of initial assumptions 
called hypotheses.

● Apply logical reasoning to derive the 
final result (the conclusion) from the 
hypotheses.

● Assuming that all intermediary steps are 
sound logical reasoning, the conclusion 
follows from the hypotheses.



  

Direct Proofs



  

Direct Proofs

● A direct proof is the simplest type of 
proof.

● Starting with an initial set of hypotheses, 
apply simple logical steps to prove the 
conclusion.
● Directly proving that the result is true.

● Contrasts with indirect proofs, which 
we'll see on Friday.



  

Two Quick Definitions

● An integer n is even if there is some 
integer k such that n = 2k.
● This means that 0 is even.

● An integer n is odd if there is some 
integer k such that n = 2k + 1.

● We'll assume the following for now:
● Every integer is either even or odd.
● No integer is both even and odd.



  

A Simple Direct Proof
Theorem: If n is even, then n2 is even.
Proof: Let n be an even integer.

Since n is even, there is some integer k
such that n = 2k.

This means that n2 = (2k)2 = 4k2 = 2(2k2).

Since 2k2 is an integer, this means that
there is some integer m (namely, 2k2) such
that n2 = 2m.

Thus n2 is even. ■
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form

“If P, then Q”
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This is the definition of an even 
integer.  When writing a 

mathematical proof, it's common 
to call back to the definitions.
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Notice how we use the value of k 
that we obtained above.  Giving 
names to quantities, even if we 
aren't fully sure what they are, 
allows us to manipulate them. This 
is similar to variables in programs.
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Our ultimate goal is to prove that 
n2 is even.  This means that we 
need to find some m such that
n2 = 2m.  Here, we're explicitly 
showing how we can do that.
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A Simple Direct Proof
Theorem: If n is even, then n2 is even.
Proof: Let n be an even integer.

Since n is even, there is some integer k
such that n = 2k.

This means that n2 = (2k)2 = 4k2 = 2(2k2).

Since 2k2 is an integer, this means that
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that n2 = 2m.

Thus n2 is even. ■

Hey, that's what we were trying 
to show!  We're done now.
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to show!  We're done now.



  

Another Direct Proof
Theorem:For any sets A, B, and C, if A ⊆ B and B ⊆ C,

then A ⊆ C.

Proof: Let A, B, and C be arbitrary sets with
A ⊆ B and B ⊆ C.

By definition, since A ⊆ B, every x ∈ A also
satisfies x ∈ B.

By definition, since B ⊆ C, every x ∈ B also 
satisfies x ∈ C.

Consequently, any x ∈ A satisfies x ∈ C.

Thus A ⊆ C. ■
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Proving Something Always Holds

● Many statements have the form

For any X, P(X) is true.
● Examples:

For all integers n, if n is even, n2 is even.

For any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.

For all sets S, |S| < | (S)|.℘

● How do we prove these statements when 
there are infinitely many cases to check?



  

Arbitrary Choices

● To prove that P(x) is true for all possible x, show 
that no matter what choice of x you make, P(x) must 
be true.

● Start the proof by making an arbitrary choice of x:
● “Let x be chosen arbitrarily.”
● “Let x be an arbitrary even integer.”
● “Let x be an arbitrary set containing 137.”
● “Consider any x.”

● Demonstrate that P(x) holds true for this choice of x.
● Conclude that since the choice of x was arbitrary, 

P(x) must hold true for all choices of x.
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An Incorrect Proof

Theorem: For any integer n, if n is even, n has no 
odd divisors.

Proof: Consider an arbitrary even natural number, 
say, 16.  16 is even, and it has no odd divisors.  
Since our choice was arbitrary, for any arbitrary 
n, if n is even, n has no odd divisors. ■



  

An Incorrect Proof

Theorem: For any integer n, if n is even, n has no 
odd divisors.

Proof: Consider an arbitrary even natural number, 
say, 16.  16 is even, and it has no odd divisors.  
Since our choice was arbitrary, for any arbitrary 
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ar·bi·trar·y
adjective /ˈärbiˌtrerē/ 

1. Based on random choice or personal whim, rather than 
any reason or system - “his mealtimes were entirely 
arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic 
in the use of authority - “arbitrary rule by King and 
bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Use this 
definition

Not this 
one!

Source: Google



  

To prove something is true for all x, do not 
choose an x and base the proof off of your 

choice!

Instead, leave x unspecified and show that 
no matter what x is, the specified property 

must hold.



  

Another Incorrect Proof

Theorem: For any sets A and B, A ⊆ A ∩ B.

Proof: We need to show that if x ∈ A, then
x ∈ A ∩ B as well.

Consider any arbitrary x ∈ A ∩ B.  This
means that x ∈ A and x ∈ B, so x ∈ A as
required. ■
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Consider any arbitrary x ∈ A ∩ B.  This
means that x ∈ A and x ∈ B, so x ∈ A as
required. ■



  

If you want to prove that P implies Q, 
assume P and prove Q.

Don't assume Q and then prove P!



  

An Entirely Different Proof

Theorem: There exists a natural number n > 0
such that the sum of all natural
numbers less than n is equal to n.



  

An Entirely Different Proof

Theorem: There exists a natural number n > 0
such that the sum of all natural
numbers less than n is equal to n.

This is a fundamentally different 
type of proof that what we've 

done before.  Instead of showing 
that every object has some 

property, we want to show that 
some object has a given property.
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Universal vs. Existential Statements

● A universal statement is a statement of the form

For all x, P(x) is true.
● We've seen how to prove these statements.
● An existential statement is a statement of the 

form

There exists an x for which P(x) is true.
● How do you prove an existential statement?



  

Proving an Existential Statement

● We will see several different ways to 
prove “there is some x for which P(x) is 
true.”

● Simple approach: Just go and find some x 
for which P(x) is true!
● In our case, we need to find a positive 

natural number n such that that sum of all 
smaller natural numbers is equal to n.

● Can we find one?



  

An Entirely Different Proof
Theorem: There exists a natural number n > 0

such that the sum of all natural 
numbers less than n is equal to n.

Proof: Take n = 3.

There are three natural numbers smaller
than 3: 0, 1, and 2.

We have 0 + 1 + 2 = 3.

Thus 3 is a natural number greater than
zero equal to the sum of all smaller natural
numbers. ■



  

The Counterfeit Coin Problem



  

Problem Statement

● You are given a set of three seemingly 
identical coins, two of which are real and 
one of which is counterfeit.

● The counterfeit coin weighs more than 
the rest of the coins.

● You are given a balance.  Using only one 
weighing on the balance, find the 
counterfeit coin.



  

Theorem: Given three coins, one of which 
weighs more than the rest, and a balance, 
there is a way to find which coin is 
counterfeit in one weighing.
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Theorem: Given three coins, one of which weighs more 
than the rest, and a balance, there is a way to find which 
coin is counterfeit in one weighing.

Proof: Label the three coins A, B, and C.  Put coins A and 
B on opposite sides of the balance.  There are three 
possible outcomes:

Case 1: Coin A is heavier than coin B.  Then coin A is 
counterfeit.

Case 2: Coin B is heaver than coin A.  Then coin B is 
counterfeit.

Case 3: Coins A and B have the same weight.  Then coin C 
is counterfeit, because coins A and B are both honest.

In each case we can locate the counterfeit coin, so with 
just one weighing it is possible to find the counterfeit 
coin. ■
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This is called a proof by cases (alternatively, 
a proof by exhaustion) and works by showing 
that the theorem is true regardless of what 

specific outcome arises.
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to make your point clearer.
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Theorem: Given three coins, one of which weighs more 
than the rest, and a balance, there is a way to find which 
coin is counterfeit in one weighing.

Proof: Label the three coins A, B, and C.  Put coins A and 
B on opposite sides of the balance.  There are three 
possible outcomes:

Case 1: Coin A is heavier than coin B.  Then coin A is 
counterfeit.

Case 2: Coin B is heaver than coin A.  Then coin B is 
counterfeit.

Case 3: Coins A and B have the same weight.  Then coin C 
is counterfeit, because coins A and B are both honest.

In each case we can locate the counterfeit coin, so with 
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coin. ■



  

A Harder Problem

● You are given a set of nine seemingly 
identical coins, eight of which are real 
and one of which is counterfeit.

● The counterfeit coin weighs more than 
the rest of the coins.

● You are given a balance.  Using only two 
weighings on the balance, find the 
counterfeit coin.
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Theorem: Given nine coins, one of which weighs more than the 
rest, and a balance, there is a way to find which coin is 
counterfeit in two weighings.

Proof: Split the coins into three groups of three coins each (call 
them A, B, and C).  Put groups A and B on opposite sides of the 
balance.  There are three possible outcomes:

Case 1: Group A is heavier than group B.  Then some coin in 
group A must be counterfeit.

Case 2: Group B is heavier than group A.  Then some coin in 
group B must be counterfeit.

Case 3: Groups A and B have the same weight.  Then some coin 
in group C must be counterfeit, because the counterfeit coin is 
not in group A or group B.

In each case, we can narrow down which of the nine coins is 
counterfeit to one of three.  Using our earlier result, we can 
find which of these three is counterfeit in just one weighing.  
Consequently, it's possible to find which of the nine coins is 
counterfeit in just two weighings. ■
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When proving a result, it's perfectly fine to 
refer to theorems you've proven earlier!  Here, 
we cite our theorem from before and say it's 
possible to find which of three coins is the 

counterfeit.

In this course, feel free to refer to any theorem 
that we've proven in lecture, in the course notes, 
in the book, in section, or in previous problem 

sets when writing your proofs.
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Theorem: Given nine coins, one of which weighs more than the 
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Relations Between Proofs

● Proofs often build off of one another: large results 
are almost often accomplished by building off of 
previous work.
● Like writing a large program – split the work into 

smaller methods, across different classes, etc. instead of 
putting the whole thing into main.

● A result that is proven specifically as a stepping 
stone toward a larger result is called a lemma.

● We can treat the proof of the three-coin case as a 
lemma in the larger proof about nine coins.
● The result in itself isn't particularly impressive, but it 

helps us prove a more advanced result.



  

Our Very Second Lemma

● Set equality is defined as follows

A = B precisely when
for every x ∈ A, x ∈ B and vice-versa.

● This definition makes it a bit tricky to 
prove that two sets are equal.

● Instead, we will prove the following 
result:

For any sets A and B,
if A ⊆ B and B ⊆ A, then A = B.



  

Lemma: For any sets A and B, if A ⊆ B and B ⊆ A, 
then A = B.

Proof: Let A and B be arbitrary sets such that A ⊆ B and
B ⊆ A.

By definition, A ⊆ B means that for all x ∈ A,
x ∈ B.

By definition, B ⊆ A means that for all x ∈ B,
x ∈ A.

Thus whenever x ∈ A, x ∈ B and whenever x ∈ B,
x ∈ A as well.

Consequently, A = B. ■



  

Using Our Lemma

● We can use this lemma to prove properties of how 
sets relate to one another.

● For example, let's prove that (A – B) ∪ B = A ∪ B.



  

Using Our Lemma

● We can use this lemma to prove properties of how 
sets relate to one another.

● For example, let's prove that (A – B) ∪ B = A ∪ B.

● Proof idea: Show that each set is a subset of the 
other.



  

Lemma 1: For any sets A and B, (A – B) ∪ B ⊆ A ∪ B.
Proof: Let A and B be arbitrary sets. Consider any

x ∈ (A – B) ∪ B.

By definition, (A – B) ∪ B is the set of all x where
x ∈ A – B or x ∈ B, so we have that x ∈ A – B or
x ∈ B. We consider these two cases separately:

Case 1: x ∈ A – B.  By definition, A – B is the set
of all x where x ∈ A and x ∉ B.  This means
that x ∈ A, and so x ∈ A ∪ B as well.

Case 2: x ∈ B.  Then x ∈ A ∪ B as well.

In either case, any x ∈ (A – B) ∪ B also satisfies
x ∈ A ∪ B, so (A – B) ∪ B ⊆ A ∪ B as required. ■



  

Lemma 2: For any sets A and B, A ∪ B ⊆ (A – B) ∪ B.

Proof: Let A and B be arbitrary sets.  Consider any
x ∈ A ∪ B.  By definition, A ∪ B is the set of all x
where x ∈ A or x ∈ B.  We consider two cases:

Case 1: x ∈ B.  Then x ∈ (A – B) ∪ B as well.

Case 2: x ∈ A.  Given that x ∈ A, we know that
either x ∈ B or x ∉ B.  If x ∈ B, then 
x ∈ (A – B) ∪ B.  Otherwise, x ∉ B, but
x ∈ A.  Thus x ∈ A – B, and therefore
x ∈ (A – B) ∪ B.

In either case, any x ∈ (A – B) ∪ B also satisfies
x ∈ A ∪ B, so (A – B) ∪ B ⊆ A ∪ B as required. ■



  

Theorem: For any sets A and B, (A – B) ∪ B = A ∪ B.

Proof: Let A and B be arbitrary sets.

By Lemma 1, (A – B) ∪ B ⊆ A ∪ B.

By Lemma 2, A ∪ B ⊆ (A – B) ∪ B.

Consequently, by our earlier lemma,
(A – B) ∪ B = A ∪ B. ■



  

Next Time

● Indirect Proofs
● Proof by contradiction.
● Proof by contrapositive.
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