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Grading Policies

B 60% Assignments
W 15% Midterm

Midterm Exam
Monday,
October 29
7PM - 10PM
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Grading Policies

B 60% Assignments
W 15% Midterm
25% Final

Final Exam
Wednesday,
December 12
12:15 - 3:15PM




Problem Sessions

7:00 - 7:50PM in 380-380X

Optional, but highly recommended.
Starts next Monday.
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A Note to CS106B Students



Goals for this Course

 Explore mathematical structures that
arise in math and computing.

 Equip you with the fundamental
mathematical tools to reason about
problems that arise in computing.

« Explore the limits of computing and what
can be computed.

 Explore the inherent complexity of
problems and why some problems are
harder than others.



Introduction to Set Theory



“CS103 students”

“All the computers on the “Cool people”

Stanford network.”

“The chemical elements” . . .
Cute animals

“US coins.”



A set is an unordered collection of distinct
objects, which may be anything (including
other sets).
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Set notation: Curly braces
with commas separating out
the elements
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detined as”
D -
We denote if The empty set
with This symbol contains no elements,

A set is an unordered collection of distinct
objects, which may be anything (including
other sets).
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Set Membership

 Given a set S and an object x, we write
X €S
if x is contained in S, and
Xé¢S
otherwise.
o If x € S, we say that x is an element of S.

« Given any object and any set, either that
object is in the set or it isn't.



Infinite Sets

« Sets can be infinitely large.
e The natural numbers, N: { 0, 1, 2, 3, ...}

 Some authors (including Sipser) don't include
zero; in this class, assume that 0 is a natural
number.

 The integers, Z: { ...,-2,-1,0,1, 2, ... }
e 7/ is from German “Zahlen.”

 The real numbers, R, including rational
and irrational numbers.



Constructing Sets from Other Sets

 Consider these English descriptions:

“All even numbers.”
“All real numbers less than 137.”

“All negative integers.”

« We can't list their (infinitely many!)
elements.

« How would we rigorously describe them?



The Set of Even Numbers

{ x| x € N and x is even }
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The Set of Even Numbers

{ x| x € N and x is even }

The set of a\\\ \

x is in The set ot
natural numbers



The Set of Even Numbers

{x xeNandxiseven}
A

The set OF aH

where

x is in The set ot
natural numbers

and x is even



Set Builder Notation

* A set may be specified in set-builder
notation:

{ X | some property x satisfies }
 For example:
{rlreR, r<137}

{ n | nis a perfect square }
{ x| xis a set of US currency }



Combining Sets
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Venn Diagrams
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AUB
{1,2,3,4,5}
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A={1,62, 3}
B={3,45}



Venn Diagrams

=
M O

N <H
— ™
Sy

Il
< A



Venn Diagrams

Symmetric
Difference

AAB
11,2,4,5}

A=A
B = {

o1 o
— —~

L =
\% \N



Venn Diagrams

AAB



Venn Diagrams




Venn Diagrams for Three Sets




Venn Diagrams for Four Sets

B C



Venn Diagrams for Four Sets

Question fo ponder:
why can't we just
draw tour circles?




A Fun Website:
Venn Diagrams for Seven Sets

http://moebio.com/research/sevensets/


http://moebio.com/research/sevensets/

Subsets and Power Sets



Subsets

A set S is a subset of some set T if every
element of S is also an element in T:

Ifxe S, then x € T.

« We denote thisas § C T.

« Examples:
« {1,2,3}C{1,2,3,4}
« N CZ (every natural number is an integer)
« Z C R (everyintegeris a real number)



What About the Empty Set?

A set S is a subset of some set T if every
element of S is also an element in T:

IfxeS, thenxeT.
e [Isd C S for any set S?
 Yes: The above statement is true.

« Vacuous truth: A statement that is true
because it does not apply to anything.

« “All unicorns are blue.”
« “All unicorns are pink.”



Proper Subsets

« By definition, any set is a subset of itself.
(Why?)

« A proper subset of a set S is a set T such
that

e TCS
« T#S

« There are multiple notations for this; they all
mean the same thing:

e T'CS
e TTCS












(5)




$(5)

p(S) is The
power set of S
(the set of all
subsets ot 9)



Cardinalities
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Cardinality

 The cardinality of a set is the number of
elements it contains.

« We denote it |S]|.

« Examples:
| {a b,c,d e}|=5
* | {{a b}, {c,d, e £ g}, {h} } | =3
«14{1,2,3,3,3,3,3}|=3
 |{x|x€eNandx <137 } | =137




Cardinality

 The cardinality of a set is the number of
elements it contains.

« We denote it |S]|.

« Examples:
| {a b,c,d e}|=5
* |{{a, b}, {c,d, e £ g} {h} }]|=3
«14{1,2,3,3,3,3,3}|=3
e [ {x|x€eNandx <137 } | =137
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 What is |N]|?
 There are infinitely many natural numbers.

* |IN| can't be a natural number, since it's
infinitely large.



The Cardinality of N

 What is |N]|?
 There are infinitely many natural numbers.

* |IN| can't be a natural number, since it's
infinitely large.

« We need to introduce a new term.
» Definition: [N| = R

 Pronounced “Aleph-Zero,” “Aleph-Nought,”
or “Aleph-Null”



Consider the set

S={x|x€Nand xis even }

What is |S]?
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Comparing Cardinalities

 Two sets have the same cardinality if
their elements can be put into a one-to-
one correspondence with one another.

e The intuition:
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Comparing Cardinalities

 Two sets have the same cardinality if
their elements can be put into a one-to-
one correspondence with one another.

e The intuition:

We've run out
of elements in
’ J the second

sef:



Infinite Cardinalities
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Infinite Cardinalities

1]

10 12 14 1o ...

0 1 2 3 4
0 2 4 6 8
ne 2n

S={x|x€Nandxiseven }

S| = IN| =x,
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n < if nis even, then -n/ 2
ifnisodd, then (n+ 1)/ 2



Infinite Cardinalities
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Infinite Cardinalities

LT

n < if nis even, then -n/ 2
ifnisodd, then (n+ 1)/ 2

Z] = |N| = N

0



Important Question

Do all infinite sets have
the same cardinality?



Prepare for one of the most beautiful (and
surprising!) proofs in mathematics...






$(5)

S| < [#2(S)]



S=4{a, b, c d}

0(S) = {
O,
{a}, {b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {b, e}
{a, b, c}, {a, b, d}, {a, ¢, d}, {b, c, d},
{a, b, c, d}

}
S| < [(S)]



If S is infinite, what is
the relation between |S| and [@(S)|?

Does |S| = |0(S)]?



If |S| = [9(S)|, there has to be a one-to-one
correspondence between elements of S and
subsets of S.

What might this correspondence look like?
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The Diagonalization Proot

« The complemented diagonal cannot
appear anywhere in the table.

 In row n, the nth element must be wrong.

 No matter how we try to assign subsets
of S to elements of S, there will always
be at least one subset left over.

 Cantor's Theorem: Every set is smaller
than its power set:

For any set S, |S| < |p(S)|



Infinite Cardinalities

« Recall: |N| = Ro.
By Cantor's Theorem:

IN| < [p(N)|
|P(N)| < |p(p(N))
(P (N))| < |p(p(p(N)))]
| (p(p(N))| < |p(p(p(p(N))))

 Not all infinite sets have the same size.
 There are multiple different infinities.



What does this have to do
with computation?



“The set of all computer programs”

“The set of all problems to solve”



Strings and Problems

 Consider the set of all strings:
{ llll’ llall’ llblll llCll’ e, llaall’ llablll llaC’ll o }

 For any set of strings S, we can solve the
following problem about S:

Write a program that accepts as input
a string, then prints out whether or
not that string belongs to set S.

 Therefore, there are at least as many
problems to solve as there are sets of
strings.



Every computer program is a string.

So, there can't be any more
programs than there are strings.

From Cantor's Theorem, we know that there are
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| < |Strings| < |Sets of Strings| < |Problems]|




Every computer program is a string.

So, there can't be any more
programs than there are strings.

From Cantor's Theorem, we know that there are
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| < |Problems]




There are more
problems to solve than
there are programs to

solve them.






It Gets Worse

 Because there are more problems than
strings, we can't even describe some of
the problems that we can't solve.

« Using more advanced set theory, we can
show that there are infinitely more
problems than solutions.

 In fact, if you pick a totally random
problem, the probability that you can
solve it is zero.



But then it gets better...



Where We're Going

 Given this hard theoretical limit, what can
we compute?

« What are the hardest problems we can solve?

« How powerful of a computer do we need to solve
these problems?

 Of what we can compute, what can we compute
efficiently?

« What tools do we need to reason about this?

« How do we build mathematical models of
computation?

« How can we reason about these models?



Next Time

« Mathematical Proof

« What is a mathematical proof?
« How can we prove things with certainty?
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