Welcome to CS103!

- Three Handouts
- Today:
- Course Overview
- Introduction to Set Theory
- The Limits of Computation

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)
Rakesh Achanta (rakesha@stanford.edu) Kyle Brogle (broglek@stanford.edu) Maurizio Caligaris (maurizio@cs.stanford.edu)

Justin Heermann (justinlh@stanford.edu)
Nicholas Isaacs (nisaacs@stanford.edu)
Jeffrey Jacobs (jjacobs3@stanford.edu)
Michael Kim (michael.kim@cs.stanford.edu)
Rose Marie Philip (rosep@stanford.edu)
Remington Wong (rwong2@stanford.edu)

Course Staff Mailing List: cs103-aut1213-staff@lists.stanford.edu

The Course Website

http://cs103.stanford.edu

Prerequisite

"Prerequisite"

CS106A

Required Reading

Introduction to the Theory of COMPUTTATION

Sceond Edition

MICHAEL SIPSER

MICHAEL SIPSER

Required Reading

Discrete Mathematics and Its Applications
skill EDTIEN

(but just the first chapter)

Online Course Notes

Grading Policies

Grading Policies

■60\% Assignments

Grading Policies

■60\% Assignments

Nine Problem Sets

Grading Policies

■ 60\% Assignments
■ 15\% Midterm

Grading Policies

■ 60\% Assignments

- 15\% Midterm

Midterm Exam
Monday,
October 29
7PM - 10PM

Grading Policies

■ 60\% Assignments

- 15\% Midterm

25\% Final

Grading Policies

■60\% Assignments

- 15\% Midterm 25\% Final

Final Exam

Wednesday,
December 12
12:15-3:15PM

Problem Sessions

7:00-7:50PM in 380-380X

Optional, but highly recommended. Starts next Monday.

A Word on the Honor Code...

A Word on the Honor Code... YOU MAKE BUNNY CRY

A Note to CS106B Students

Goals for this Course

- Explore mathematical structures that arise in math and computing.
- Equip you with the fundamental mathematical tools to reason about problems that arise in computing.
- Explore the limits of computing and what can be computed.
- Explore the inherent complexity of problems and why some problems are harder than others.

Introduction to Set Theory

"CS103 students"

"All the computers on the Stanford network."
"Cool people"
"The chemical elements"
"Cute animals"
"US coins."

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

> Set notation: Curly braces with commas separating out the elements

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

A set is an unordered collection of distinct objects, which may be anything (including other sets).

$$
\}
$$

A set is an unordered collection of distinct objects, which may be anything (including other sets).

$$
\}
$$

The empty set contains no elements.

A set is an unordered collection of distinct objects, which may be anything (including other sets).

We denote it with this symbol

$$
\}
$$

The empty set contains no elements.

A set is an unordered collection of distinct objects, which may be anything (including other sets).

We denote it with this symbol

The empty set contains no elements.

A set is an unordered collection of distinct objects, which may be anything (including other sets).

This symbol means "is defined as"

\varnothing \uparrow

We denote it with this symbol

The empty set contains no elements.

A set is an unordered collection of distinct objects, which may be anything (including other sets).

Membership

Membership

Membership

Membership

Membership

Membership

Set Membership

- Given a set S and an object x, we write

$$
x \in S
$$

if x is contained in S, and

$$
x \notin S
$$

otherwise.

- If $x \in S$, we say that x is an element of S.
- Given any object and any set, either that object is in the set or it isn't.

Infinite Sets

- Sets can be infinitely large.
- The natural numbers, \mathbb{N} : $\{0,1,2,3, \ldots\}$
- Some authors (including Sipser) don't include zero; in this class, assume that 0 is a natural number.
- The integers, $\mathbb{Z}:\{\ldots,-2,-1,0,1,2, \ldots\}$
- Z is from German "Zahlen."
- The real numbers, \mathbb{R}, including rational and irrational numbers.

Constructing Sets from Other Sets

- Consider these English descriptions:
"All even numbers."
"All real numbers less than 137."
"All negative integers."
- We can't list their (infinitely many!) elements.
- How would we rigorously describe them?

The Set of Even Numbers

$$
\{x \mid x \in \mathbb{N} \text { and } x \text { is even }\}
$$

The Set of Even Numbers

$$
\{x \mid x \in \mathbb{N} \text { and } x \text { is even }\}
$$

The set of all x

The Set of Even Numbers

$$
\{x \mid x \in \mathbb{N} \text { and } x \text { is even }\}
$$

The set of all x

where

The Set of Even Numbers

$$
\{x \mid \boldsymbol{x} \in \mathbb{N} \text { and } x \text { is even }\}
$$

The set of all x

where

x is in the set of
natural numbers

The Set of Even Numbers

$$
\{x \mid x \in \mathbb{N} \text { and } x \text { is even }\}
$$

The set of all x
where
x is in the set of
natural numbers

$$
\text { and } x \text { is even }
$$

Set Builder Notation

- A set may be specified in set-builder notation:

\{ x|some property x satisfies \}

- For example:
$\{r \mid r \in \mathbb{R}, r<137\}$
$\{n \mid n$ is a perfect square \}
$\{x \mid x$ is a set of US currency $\}$

Combining Sets

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

A

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

B

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

Intersection

$$
\begin{gathered}
A \cap B \\
\{3\}
\end{gathered}
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

Difference

$$
A-B
$$

$$
\{1,2\}
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

Difference

$A \backslash B$

\{ 1, 2 \}

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\}
\end{aligned}
$$

Venn Diagrams

$A \Delta B$

Venn Diagrams

Venn Diagrams for Three Sets

Venn Diagrams for Four Sets

Venn Diagrams for Four Sets

A Fun Website: Venn Diagrams for Seven Sets

http://moebio.com/research/sevensets/

Subsets and Power Sets

Subsets

- A set S is a subset of some set T if every element of S is also an element in T : If $x \in S$, then $x \in T$.
- We denote this as $\boldsymbol{S} \subseteq \boldsymbol{T}$.
- Examples:
- \{ $1,2,3\} \subseteq\{1,2,3,4\}$
- $\mathbb{N} \subseteq \mathbb{Z}$ (every natural number is an integer)
- $\mathbb{Z} \subseteq \mathbb{R}$ (every integer is a real number)

What About the Empty Set?

- A set S is a subset of some set T if every element of S is also an element in T :

$$
\text { If } x \in S, \text { then } x \in T
$$

- Is $\varnothing \subseteq S$ for any set S ?
- Yes: The above statement is true.
- Vacuous truth: A statement that is true because it does not apply to anything.
- "All unicorns are blue."
- "All unicorns are pink."

Proper Subsets

- By definition, any set is a subset of itself. (Why?)
- A proper subset of a set S is a set T such that
- $T \subseteq S$
- $T \neq S$
- There are multiple notations for this; they all mean the same thing:
- $T \subsetneq S$
- $T \subset S$

$$
S=\{\theta, 0\}
$$

$$
S=\{\theta,\}
$$

$$
\varnothing\{\theta\}\{囚\}\{\theta, \theta\}
$$

$$
\begin{gathered}
S=\{\theta, 0\} \\
\{\varnothing,\{ \},\},\{\theta,\}\}
\end{gathered}
$$

$$
\begin{gathered}
S=\{\varnothing, \sigma\} \\
\wp(S)=\{\varnothing,\{\varnothing\},(\varnothing\},\{\theta,\}\}
\end{gathered}
$$

Cardinalities

Cardinalities

Cardinality

- The cardinality of a set is the number of elements it contains.
- We denote it $|S|$.
- Examples:
- | \{ a, b, c, d, e\} | = 5
- | \{ \{a, b\}, \{c, d, e, f, g\}, \{h\} \} |=3
- | \{ 1, 2, 3, 3, 3, 3, 3 \} | = 3
- $\mid\{x \mid x \in \mathbb{N}$ and $x<137\} \mid=137$

Cardinality

- The cardinality of a set is the number of elements it contains.
- We denote it $|S|$.
- Examples:
- | \{ a, b, c, d, e\} | = 5
- | \{ \{a, b\}, \{c, d, e, f, g\}, \{h\} \} |=3
- | $\{1,2,3,3,3,3,3\} \mid=3$
- $\mid\{x \mid x \in \mathbb{N}$ and $x<137\} \mid=137$

The Cardinality of \mathbb{N}

- What is $|\mathbb{N}|$?
- There are infinitely many natural numbers.
- $|\mathbb{N}|$ can't be a natural number, since it's infinitely large.

The Cardinality of \mathbb{N}

- What is $|\mathbb{N}|$?
- There are infinitely many natural numbers.
- $|\mathbb{N}|$ can't be a natural number, since it's infinitely large.
- We need to introduce a new term.
- Definition: $|\mathbb{N}|=\boldsymbol{N}_{0}$
- Pronounced "Aleph-Zero," "Aleph-Nought," or "Aleph-Null"

Consider the set

$$
S=\{x \mid x \in \mathbb{N} \text { and } x \text { is even }\}
$$

What is $|S|$?

How Big Are These Sets?

How Big Are These Sets?

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Comparing Cardinalities

- Two sets have the same cardinality if their elements can be put into a one-toone correspondence with one another.
- The intuition:

Infinite Cardinalities

$$
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
0 & & & & & & & & & \\
0 & 2 & 6 & 8 & 10 & 12 & 14 & 16 & \ldots
\end{array}
$$

Infinite Cardinalities

$$
\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & \ldots \\
0 & \leftrightarrow & 2 n
\end{array}
$$

Infinite Cardinalities

$$
\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
& \uparrow & \cdots \\
& & & & & & & & & & \\
0 & 2 & 4 & 6 & 8 & \downarrow & \downarrow & \downarrow & \downarrow & 12 & 14 \\
0 & 16 & \ldots \\
& n & \leftrightarrow & 2 n
\end{array}
$$

Infinite Cardinalities

$$
\begin{aligned}
& n \leftrightarrow 2 n \\
& S=\{x \mid x \in \mathbb{N} \text { and } x \text { is even }\} \\
& |S|=|\mathbb{N}|=\aleph_{0}
\end{aligned}
$$

Infinite Cardinalities

$$
\begin{array}{lllllllllll}
\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
& & & & & & & & & & \\
\mathbb{Z} & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & \ldots
\end{array}
$$

Infinite Cardinalities

$\begin{array}{lllllllllll}\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots\end{array}$

Infinite Cardinalities

$\begin{array}{lllllllllll}\mathbb{N} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots\end{array}$
$\begin{array}{lllllllllll}\mathbb{Z} & 0 & 1 & -1 & 2 & -2 & 3 & -3 & 4 & -4 & \ldots\end{array}$
$n \leftrightarrow$ if n is even, then $-n / 2$ if n is odd, then $(n+1) / 2$

Infinite Cardinalities

$n \leftrightarrow$ if n is even, then $-n / 2$ if n is odd, then $(n+1) / 2$

Infinite Cardinalities

$n \leftrightarrow$ if n is even, then $-n / 2$ if n is odd, then $(n+1) / 2$

$$
|\mathbb{Z}|=|\mathbb{N}|=s_{0}
$$

Important Question

Do all infinite sets have the same cardinality?

Prepare for one of the most beautiful (and surprising!) proofs in mathematics...

$$
\begin{aligned}
S & =\{\theta,\} \\
\wp(S)= & \{\varnothing,\{ \},(\theta,\},\}\} \\
& |S|<|\wp(S)|
\end{aligned}
$$

$S=\{\Theta, 0\}$

$$
S=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\}
$$

$$
\wp(S)=\{
$$

$$
\varnothing
$$

$\{a\},\{b\},\{c\},\{d\}$,
$\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{b, e\}$ $\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$, $\{a, b, c, d\}$

$$
\text { \} }
$$

$$
|S|<|\wp(S)|
$$

If S is infinite, what is the relation between $|S|$ and $|\wp(S)|$?

Does $|S|=|\wp(S)|$?

If $|S|=|\wp(S)|$, there has to be a one-to-one

 correspondence between elements of S and subsets of S.What might this correspondence look like?

$$
\begin{gathered}
\mathrm{x}_{0} \\
\mathrm{X}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3} \\
\mathrm{X}_{4} \\
\mathrm{X}_{5} \\
\ldots
\end{gathered}
$$

$$
\begin{aligned}
& x_{0} \hookrightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots\right\} \\
& x_{1} \hookrightarrow\left\{x_{0}, x_{3}, x_{4}, \ldots\right\} \\
& x_{2} \longleftrightarrow\left\{x_{4}, \ldots\right\} \\
& x_{3} \longleftrightarrow\left\{x_{1}, x_{4}, \ldots\right\} \\
& x_{4} \longleftrightarrow\left\{x_{0}, x_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
\mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5}
\end{array} \\
& x_{0} \longleftrightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots\right\} \\
& \mathrm{x}_{1} \leftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& X_{3} \longleftrightarrow\left\{x_{1}, x_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|llllll}
\mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5}
\end{array} \\
& x_{0} \longleftrightarrow\left\{x_{0}, \quad x_{2}, \quad x_{4}, \quad \ldots\right\} \\
& \mathrm{x}_{1} \leftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{2} \longleftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{0} \longleftrightarrow \begin{array}{|c|c|c|c|c|c|c|}
\hline \mathbf{x}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5} & \ldots \\
\hline \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline
\end{array} \\
& \mathrm{x}_{1} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{x}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{X}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|llllll}
\mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5}
\end{array} \\
& x_{0} \longleftrightarrow\left\{x_{0}, \quad x_{2}, \quad x_{4}, \quad \ldots\right\} \\
& \mathrm{x}_{1} \leftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{2} \longleftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{0} \longleftrightarrow \begin{array}{|c|c|c|c|c|c|c|}
\hline \mathbf{x}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5} & \ldots \\
\hline \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline
\end{array} \\
& \mathrm{x}_{1} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{3}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{x}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{X}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{0} \longleftrightarrow \begin{array}{|c|c|c|c|c|c|c|}
\hline \mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \ldots \\
\hline \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline
\end{array} \\
& \mathrm{X}_{1} \hookrightarrow\left\{\mathrm{x}_{0}, \quad \mathrm{x}_{3}, \quad \mathrm{x}_{4}, \quad \ldots\right\} \\
& \mathrm{x}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}_{0} \longleftrightarrow \begin{array}{|c|c|c|c|c|c|c|}
\hline \mathrm{X}_{0} & \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{x}_{3} & \mathrm{X}_{4} & \mathrm{X}_{5} & \ldots \\
\mathbf{X}_{1} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} \\
\hline \mathbf{Y} & \mathbf{N} & \mathbf{N} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \cdots \\
\hline
\end{array} \\
& \mathrm{x}_{2} \leftrightarrow\left\{\mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}_{2} \longleftrightarrow\left\{\quad \mathrm{x}_{4}, \quad \ldots\right\} \\
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{x}_{1}, \mathrm{x}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{X}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}_{3} \longleftrightarrow\left\{\mathrm{X}_{1}, \mathrm{X}_{4}, \ldots\right\} \\
& \mathrm{X}_{4} \longleftrightarrow\left\{\mathrm{x}_{0}, \mathrm{X}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|c|c|c|c|c|c|c|}
\hline \mathrm{x}_{0} & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \ldots \\
\mathrm{x}_{0} & \bullet \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\mathrm{x}_{1} & \bullet \mathbf{Y} & \mathbf{N} & \mathbf{N} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \ldots \\
\mathrm{x}_{2} & \bullet \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{Y} & \mathbf{N} & \ldots \\
\hline
\end{array} \\
& x_{3} \longleftrightarrow\left\{x_{1}, \quad x_{4}, \quad \ldots\right\} \\
& \mathrm{x}_{4} \leftrightarrow\left\{\mathrm{x}_{0}, \mathrm{x}_{5}, \ldots\right\} \\
& x_{5} \longleftrightarrow\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right\}
\end{aligned}
$$

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	
X_{0} ¢	Y	N	Y	N	Y	N	..
$\mathrm{x}_{1} \longrightarrow$	Y	N	N	Y	Y	N	..
$\mathrm{x}_{2} \longleftrightarrow$	N	N	N	N	Y	N	..
X_{3}	N	Y	N	N	Y	N	
$\mathrm{X}_{4} \longrightarrow$		N	N	N	N	Y	
$\mathrm{X}_{5} \longrightarrow$		Y	Y	Y	Y	Y	

	X_{0}	x_{1}	X_{2}	X_{3}	X_{4}	X_{5}	..
x_{0} 」	Y	N	Y	N	Y	N	..
x_{1} -	Y	N	N	Y	Y	N	..
$\mathrm{X}_{2} \longleftrightarrow$	N	N	N	N	Y	N	
x_{3}	N	Y	N	N	Y	N	
$\mathrm{X}_{4} \longleftrightarrow$	Y	N	N	N	N	Y	
X_{5}	Y	Y	Y	Y	Y	Y	

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots	\cdots						

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots	\cdots						

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots							
	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots							
	$\left\{\begin{array}{llllll} & \mathbf{x}_{\mathbf{0}}, & & & & \mathbf{x}_{\mathbf{5}},\end{array}\right.$	\ldots					

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots							
	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
\cdots	\cdots	...	\cdots	
	Y	N	N	N	N	Y	-•	

	x_{0}	X_{1}	x_{2}	x_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
\cdots	\cdots	
	Y	N	N	N	N	Y	...	

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots							
	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Flip all Y 's to N 's and viceversa to get a new set
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	Y	N	N	N	N	Y	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Flip all y 's to N's and viceversa to get a new set
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	..	

	x_{0}	x_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Flip all y's to N's and vice-
X_{4}	Y	N	N	N	N	Y	...	versa to get a
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	...	$\begin{aligned} & . . \\ & \mathbf{x}_{1} \end{aligned}$		$\begin{aligned} & \cdots \\ & \mathbf{x}_{3} \end{aligned}$...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Flip all y 's to N's and viceversa to get a new set
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	..	

	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\ldots
x_{0}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{1}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots
x_{2}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{3}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\mathbf{N}	\ldots
x_{4}	\mathbf{Y}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{N}	\mathbf{Y}	\ldots
x_{5}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\ldots
\ldots							
	\mathbf{N}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\ldots

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	x_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	...	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired with this set?
X_{4}	Y	N	N	N	N	Y	...	
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	X_{0}	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	\ldots	
X_{0}	Y	N	Y	N	Y	N	...	
X_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	-	
X_{3}	\mathbf{N}	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	-..	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	-••	
...	-	-••	...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	x_{3}	x_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
x_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
...	
	N	Y	Y	Y	Y	N	...	

	x_{0}	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	\ldots	
x_{0}	Y	N	Y	N	Y	N	...	
x_{1}	Y	N	N	Y	Y	N	...	
X_{2}	N	N	N	N	Y	N	...	
X_{3}	N	Y	N	N	Y	N	...	Which row in the table is paired
X_{4}	Y	N	N	N	N	Y	...	with this set?
X_{5}	Y	Y	Y	Y	Y	Y	...	
\cdots	\ldots	
	N	Y	Y	Y	Y	N		

The Diagonalization Proof

- The complemented diagonal cannot appear anywhere in the table.
- In row n, the nth element must be wrong.
- No matter how we try to assign subsets of S to elements of S, there will always be at least one subset left over.
- Cantor's Theorem: Every set is smaller than its power set:

For any set $S,|S|<|\wp(S)|$

Infinite Cardinalities

- Recall: $|\mathbb{N}|=$ so.
- By Cantor's Theorem:

$$
\begin{aligned}
|\mathbb{N}| & <|\wp(\mathbb{N})| \\
|\wp(\mathbb{N})| & <|\wp(\wp(\mathbb{N}))| \\
|\wp(\wp(\mathbb{N}))| & <|\wp(\wp(\wp(\mathbb{N})))| \\
|\wp(\wp(\wp(\mathbb{N})))| & <|\wp(\wp(\wp(\wp(\mathbb{N}))))|
\end{aligned}
$$

- Not all infinite sets have the same size.
- There are multiple different infinities.

What does this have to do with computation?
"The set of all computer programs"
"The set of all problems to solve"

Strings and Problems

- Consider the set of all strings:
\{ "", "a", "b", "c", ..., "aa", "ab", "ac," ... \}
- For any set of strings S, we can solve the following problem about S :

Write a program that accepts as input a string, then prints out whether or not that string belongs to set \boldsymbol{S}.

- Therefore, there are at least as many problems to solve as there are sets of strings.

Every computer program is a string.
So, there can't be any more programs than there are strings.

From Cantor's Theorem, we know that there are more sets of strings than strings.

There are at least as many problems as there are sets of strings.

Every computer program is a string.
So, there can't be any more programs than there are strings.

From Cantor's Theorem, we know that there are more sets of strings than strings.

There are at least as many problems as there are sets of strings.

There are more problems to solve than there are programs to solve them.

It Gets Worse

- Because there are more problems than strings, we can't even describe some of the problems that we can't solve.
- Using more advanced set theory, we can show that there are infinitely more problems than solutions.
- In fact, if you pick a totally random problem, the probability that you can solve it is zero.

But then it gets better...

Where We're Going

- Given this hard theoretical limit, what can we compute?
- What are the hardest problems we can solve?
- How powerful of a computer do we need to solve these problems?
- Of what we can compute, what can we compute efficiently?
- What tools do we need to reason about this?
- How do we build mathematical models of computation?
- How can we reason about these models?

Next Time

- Mathematical Proof
- What is a mathematical proof?
- How can we prove things with certainty?

