

Global Optimization
Part II

Announcements

● Programming Project 4 due Saturday,
August 18 at 11:30AM.
● OH today and tomorrow.
● Ask questions via email!
● Ask questions via Piazzza!
● No late submissions.

Four Square!
5:30PM Thursday, Outside Gates

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Optimization

IR Generation

Code Generation

Optimization

Source
Code

Machine
Code

Review: Why Global Analysis is Hard

● Need to be able to handle multiple
predecessors/successors for a basic block.

● Need to be able to handle multiple paths
through the control-flow graph, and may
need to iterate multiple times to compute
the final value (but the analysis still needs
to terminate!)

● Need to be able to assign each basic block
a reasonable default value for before
we've analyzed it.

Review: Meet Semilattices

● A meet semilattice is a ordering defined on a
set of elements.

● Any two elements have some meet that is the
largest element smaller than both elements.

● There is a unique top element, which is at least
as large as any other element.

● Intuitively:
● The meet of two elements represents combining

information from two elements.
● The top element element represents “no information

yet.”

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Top
Element

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Review: Meet Semilattices

● A meet semilattice is a pair (D, ∧), where
● D is a domain of elements.
● ∧ is a meet operator that is

– idempotent: x ∧ x = x
– commutative: x ∧ y = y ∧ x
– associative: (x ∧ y) ∧ z = x ∧ (y ∧ z)

● If x ∧ y = z, we say that z is the meet or
(greatest lower bound) of x and y.

● Every meet semilattice has a top element
denoted ⊤ such that ⊤∧ x = x for all x.

Meet Semilattices and Orderings

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Larger

Smaller

Meet Semilattices and Orderings

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Most Precise

Least Precise

Meet Semilattices and Orderings

● Every meet semilattice (D, ∧) induces an
ordering relationship ≤ over its
elements.

● Define x ≤ y iff x ∧ y = x
● Need to prove

● Reflexivity: x ≤ x
● Antisymmetry: If x ≤ y and y ≤ x, then x = y.
● Transitivity: If x ≤ y and y ≤ z, then x ≤ z.

An Example Semilattice

● The set of natural numbers and the max function.
● Idempotent

● max{a, a} = a

● Commutative
● max{a, b} = max{b, a}

● Associative
● max{a, max{b, c}} = max{max{a, b}, c}

● Top element is 0:
● max{0, a} = a

● What is the ordering over these elements?

A Semilattice for Liveness

● Sets of live variables and the set union operation.
● Idempotent:

● x ∪ x = x

● Commutative:
● x ∪ y = y ∪ x

● Associative:
● (x ∪ y) ∪ z = x ∪ (y ∪ z)

● Top element:
● The empty set: Ø ∪ x = x

● What is the ordering over these elements?

Proving Termination

● Our algorithm for running these analyses
continuously loops until no changes are
detected.

● Given this, how do we know the analyses
will eventually terminate?

● In general, we don't.

A Nonterminating Analysis

● The following analysis will loop infinitely
on any CFG containing a loop:

● Direction: Forward
● Domain: ℕ
● Meet operator: max
● Transfer function: f(n) = n + 1
● Initial value: 0

A Nonterminating Analysis

start

end

x = y

A Nonterminating Analysis

start

end

x = y
0

A Nonterminating Analysis

start
0

end

x = y
0

A Nonterminating Analysis

start
0

end

x = y
0

A Nonterminating Analysis

start
0

end

0
x = y
0

A Nonterminating Analysis

start
0

end

0
x = y
1

A Nonterminating Analysis

start
0

end

0
x = y
1

A Nonterminating Analysis

start
0

end

0
x = y
1

A Nonterminating Analysis

start
0

end

1
x = y
1

A Nonterminating Analysis

start
0

end

1
x = y
2

A Nonterminating Analysis

start
0

end

1
x = y
2

A Nonterminating Analysis

start
0

end

1
x = y
2

A Nonterminating Analysis

start
0

end

2
x = y
2

A Nonterminating Analysis

start
0

end

2
x = y
3

A Nonterminating Analysis

start
0

end

2
x = y
3

Why Doesn't This Terminate?

● Values can decrease without bound.
● Note that “decrease” refers to the lattice

ordering, not the ordering on the natural
numbers.

● The height of a semilattice is the length of
the longest decreasing sequence in that
semilattice.

● The dataflow framework is not guaranteed to
terminate for semilattices of infinite height.

● Note that a semilattice can be infinitely large
but have finite height (e.g. constant
propagation).

0

1

2

3

4

5

...

Another Nonterminating Analysis

● This analysis works on a finite-height
semilattice, but will not terminate on
certain CFGs:

● Direction: Forward
● Domain: Boolean values true and false

● Meet operator: Logical AND
● Transfer function: Logical NOT
● Initial value: true

Another Nonterminating Analysis

start

end

x = y

Another Nonterminating Analysis

start

end

x = y
true

Another Nonterminating Analysis

start
true

end

x = y
true

Another Nonterminating Analysis

start
true

end

x = y
true

Another Nonterminating Analysis

start
true

end

true
x = y
true

Another Nonterminating Analysis

start
true

end

true
x = y
false

Another Nonterminating Analysis

start
true

end

true
x = y
false

Another Nonterminating Analysis

start
true

end

true
x = y
false

Another Nonterminating Analysis

start
true

end

false
x = y
false

Another Nonterminating Analysis

start
true

end

false
x = y
true

Another Nonterminating Analysis

start
true

end

false
x = y
true

Another Nonterminating Analysis

start
true

end

false
x = y
true

Another Nonterminating Analysis

start
true

end

true
x = y
true

Another Nonterminating Analysis

start
true

end

true
x = y
false

Another Nonterminating Analysis

start
true

end

true
x = y
false

What Went Wrong (This Time)?

● Values can loop indefinitely.
● Intuitively, the meet operator keeps

pulling values down.
● If the transfer function can keep pushing

values back up again, then the values
might cycle forever.

● How can we fix this?

What Went Wrong (This Time)?

● Values can loop indefinitely.
● Intuitively, the meet operator keeps

pulling values down.
● If the transfer function can keep pushing

values back up again, then the values
might cycle forever.

● How can we fix this?

What's wrong
with cycling forever?

What Went Wrong (This Time)?

● Values can loop indefinitely.
● Intuitively, the meet operator keeps

pulling values down.
● If the transfer function can keep pushing

values back up again, then the values
might cycle forever.

● How can we fix this?

What Went Wrong (This Time)?

● Values can loop indefinitely.
● Intuitively, the meet operator keeps

pulling values down.
● If the transfer function can keep pushing

values back up again, then the values
might cycle forever.

● How can we fix this?

Monotone Transfer Functions

● A transfer function is monotone iff

if x ≤ y, then f(x) ≤ f(y)
● Intuitively, if you know less information

about a program point, you can't “gain
back” more information about that program
point.

● Many transfer functions are monotone,
including those for liveness and constant
propagation.

● Note: Monotonicity does not mean that
f(x) ≤ x; we'll see an example.

Liveness and Monotonicity

● A transfer function is monotone iff

if x ≤ y, then f(x) ≤ f(y)
● Recall our transfer function for a = b + c

is
● fa = b + c (V) = (V – a) ∪ {b, c}

● Recall that our meet semilattice has set
union as a transfer function and induces an
ordering relationship X ≤ Y iff X ⊇ Y.

● Is this monotone?

Constant Propagation is Monotone

● A transfer function is monotone iff

if x ≤ y, then f(x) ≤ f(y)
● Recall our transfer functions are

● fx = k (V) = k

● fx = a + b (V) = Not a Constant

● fy = a + b (V) = V

● Is this monotonic?

The Grand Result

● Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone
transfer functions always terminates.

● Proof sketch:
● Run the data-flow iteration once to get some initial

values.
● From this point forward:

– The meet operator can only bring values down.
– The transfer function can never raise values back up

above where they were in the past (monotonicity)
– Values cannot decrease indefinitely (finite height)

Partial-Redundancy
Elimination

Code Size is Not Execution Time

● All of the analyses we've seen so far have
worked by simplifying or eliminating IR
code.

● However, much of optimization results
from moving code from one basic block
to another.

Code Size is Not Execution Time

● All of the analyses we've seen so far have
worked by simplifying or eliminating IR
code.

● However, much of optimization results
from moving code from one basic block
to another.

a = b + c

Code Size is Not Execution Time

● All of the analyses we've seen so far have
worked by simplifying or eliminating IR
code.

● However, much of optimization results
from moving code from one basic block
to another. a = b + c

Code Size is Not Execution Time

● In some cases, it is possible to decrease
execution time by inserting new code
into the program.

● One possible example:

Code Size is Not Execution Time

● In some cases, it is possible to decrease
execution time by inserting new code
into the program.

● One possible example:

d = b + c

a = b + c

e = b + c

Code Size is Not Execution Time

● In some cases, it is possible to decrease
execution time by inserting new code
into the program.

● One possible example:
t
0
 = b + c

d = b + c

a = b + c

e = b + c

Code Size is Not Execution Time

● In some cases, it is possible to decrease
execution time by inserting new code
into the program.

● One possible example:
t
0
 = b + c

d = t
0

a = t
0

e = t
0

Eliminating Redundancy

● A computation in a program is said to be
redundant if it computes a value that is
already known.

● Common subexpressions are one
example of redundancy.

● Loop-invariant code is another example.
● Virtually all optimizing compilers have

some logic to try to eliminate
redundancy.

Partial Redundancy

● One of the trickiest cases of redundancy
to eliminate is partial redundancy.

● A computation is partially redundant if
its value is known on only some of the
paths that reach it.

d = b + c

a = b + c

Partial Redundancy

● One of the trickiest cases of redundancy
to eliminate is partial redundancy.

● A computation is partially redundant if
its value is known on only some of the
paths that reach it.

d = b + c

a = b + c

Partial Redundancy

● One of the trickiest cases of redundancy
to eliminate is partial redundancy.

● A computation is partially redundant if
its value is known on only some of the
paths that reach it.

d = b + c

a = b + c

Eliminating Partial Redundancy

● Goal: Eliminate partial redundancy
without making any execution of the
program do more work than before.

● Optimized code should always be at least
as good as the original.

The Key Observation

d = b + c

a = b + c

The Key Observation

d = b + c

a = b + c

Where in the program
is it guaranteed that
we will eventually need
the value of b + c?

The Key Observation

d = b + c

a = b + c

Where in the program
is it guaranteed that
we will eventually need
the value of b + c?

The Key Observation

d = b + c

a = b + c

Where in the program
is it guaranteed that
we will eventually need
the value of b + c?

The Key Observation

d = b + c

a = b + c

Where in the program
is it guaranteed that
we will eventually need
the value of b + c?

The Key Observation

d = b + c

a = b + c

Where in the program
is it guaranteed that
we will eventually need
the value of b + c?

An expression is called anticipated at a
program point if the expression is

guaranteed to be used after that point.

Although not all paths through the program
might directly need an expression, they

may anticipate the expression.

The Second Key Observation

d = b + c

a = b + c

The Second Key Observation

d = b + c

a = b + c

Where in the program
is the value of b + c
already computed?

The Second Key Observation

d = b + c

a = b + c

Where in the program
is the value of b + c
already computed?

The Second Key Observation

d = b + c

a = b + c

Where in the program
is the value of b + c
already computed?

The Second Key Observation

d = b + c

a = b + c

Where in the program
is the value of b + c
already computed?

What happens if we
compute it here?

The Second Key Observation
t
0
 = b + c

d = b + c

a = b + c

Where in the program
is the value of b + c
already computed?

What happens if we
compute it here?

The Second Key Observation
t
0
 = b + c

d = b + c

a = b + c

Where in the program
is the value of b + c
already computed?

What happens if we
compute it here?

Partial-Redundancy Elimination

● Idea: Make the expression available
everywhere that it's anticipated.

● Run an analysis to locate where the
expression is anticipated.

● Run a second analysis to locate where
the expression is available.

● Place the expression at the earliest
locations where the expression is
anticipated but not available.

Eliminating Redundancy

Eliminating Redundancy

a = b + c

Eliminating Redundancy

Anticipated

Available
a = b + c

a = b + c

Eliminating Redundancy

Anticipated

Available

a = b + c

Eliminating Redundancy

Anticipated

Available

a = b + c

Eliminating Redundancy

Anticipated

Available

a = b + c

Eliminating Redundancy

Anticipated

Available

a = b + c

Eliminating Redundancy

Anticipated

Available

a = b + c

Eliminating Redundancy

Anticipated

Available

a = b + c

Eliminating Redundancy

a = b + c

Eliminating Redundancy II

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

t
0
 = b + c

d = b + c

a = b + c

e = b + c
Anticipated

Available

Eliminating Redundancy II

t
0
 = b + c

d = t
0

a = t
0

e = t
0

Anticipated

Available

Eliminating Redundancy II

t
0
 = b + c

d = t
0

a = t
0

e = t
0

Eliminating Redundancy III

Eliminating Redundancy III

d = b + c

a = b + c

Eliminating Redundancy III

d = b + c

a = b + c

Anticipated

Available

Eliminating Redundancy III

d = b + c

a = b + c

Anticipated

Available

Eliminating Redundancy III

d = b + c

a = b + c

Anticipated

Available

Eliminating Redundancy III

d = b + c

a = b + c

Anticipated

Available

Eliminating Redundancy III

d = b + c

a = b + c

Anticipated

Available

Eliminating Redundancy III

d = b + c

a = b + c

Anticipated

Available

Eliminating Redundancy III

d = b + c

a = b + c

Anticipated

Available

Eliminating Redundancy III

t
0
= b + c

d = b + c

a = b + c

Anticipated

Available

Eliminating Redundancy III

t
0
= b + c

d = t
0

a = t
0

Anticipated

Available

Eliminating Redundancy III

t
0
= b + c

d = t
0

a = t
0

Partial Redundancy Elimination

● Powerful optimization; handles a huge
number of disparate cases.

● Subsumes common subexpression
elimination, loop invariant code motion,
full redundancy elimination, and copy
propagation.

● Almost all compilers do this.

In Practice

● Partial-redundancy elimination is typically
implemented using four dataflow analyses.
● Pass one: Determine where anticipated.
● Pass two: Determine where available.
● Pass three: Find best placement.
● Pass four: Cleanup unnecessary temporaries.

● A bit more complex than what we covered:
● Have to add basic blocks at some points.
● For very complex CFGs, might miss some

redundancy.

● See Dragon Book, Ch. 9.5 for more details.

Summary

● The dataflow framework gives a unified framework for
defining global analyses.

● All of the following analyses can be formulated in the
dataflow framework:
● Global dead code elimination.
● Global constant propagation.
● Partial redundancy elimination.

● Meet semilattices give a way of describing how to
initialize the analysis and combine intermediate results.

● Monotone transfer functions, combined with finite-
height lattices, are necessary to guarantee termination.

Next Time

● Register Allocation
● The memory hierarchy.
● Naive register allocation.
● Linear scan allocation.
● Graph-coloring allocation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

