
  

Global Optimization



  

Announcements

● Programming Project 3 due tonight at 
11:59PM.
● Feel free to stop by office hours with questions!
● Feel free to email the staff list or ask questions on 

Piazza!
● This is the last assignment on which you can use 

late days.

● Programming Project 4 out, due Saturday, 
August 18th at 11:30AM.
● No late submissions; this is the latest possible 

time we can make the assignment due.



  

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Optimization

IR Generation

Code Generation

Optimization

Source
Code

Machine
Code



  

Review of Local Optimization



  

Review from Last Time

● A basic block is a series of IR instructions where
● there is one entry point into the basic block, and
● there is one exit point out of the basic block.

● Intuitively, a block of IR instructions that all must 
execute as a unit.

● A control-flow graph (CFG) is a graph of the basic 
blocks of a function.

● Each edge in a CFG corresponds to a possible flow of 
control through the program.



  

Review from Last Time

● A local optimization is an optimization 
of IR instructions within a single basic 
block.

● We saw five examples of this:
● Common subexpression elimination.
● Copy propagation.
● Dead code elimination.
● Arithmetic simplification.
● Constant folding.



  

Review from Last Time

● Last time, we defined two analyses used in 
our optimizations.

● Available expressions: Track what 
variables are assigned which expressions.
● Compute by walking forward across the values 

in a basic block.

● Live variables: Track what variables will 
eventually be used.
● Compute by walking backward across the 

values in a basic block.



  

Available Expressions

a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

{ a = b, c = b, d = b, e = a + b, f = a + b }



  

Another View of Local Analyses



  

Another View of Local Analyses

Vin



  

Another View of Local Analyses

a = b + c

Vin



  

Another View of Local Analyses

a = b + c

Vin

Vout



  

Another View of Local Analyses

a = b + c

Vin

Vout

Vout = fa = b+c(Vin)



  

Another View of Local Optimization

● In local optimization, we want to reason 
about some property of the runtime 
behavior of the program.

● Could we run the program and just 
watch what happens?

● Idea: Redefine the semantics of our 
programming language to give us 
information about our analysis.



  

Properties of Local Analysis

● The only way to find out what a program will 
actually do is to run it.

● Problems:
● The program might not terminate.
● The program might have some behavior we didn't 

see when we ran it on a particular input.

● However, this is not a problem inside a basic 
block.
● Basic blocks contain no loops.
● There is only one path through the basic block.



  

Assigning New Semantics

● Example: Available Expressions
● Redefine the statement a = b + c to 

mean “a now holds the value of b + c, 
and any variable holding the value a is 
now invalid.”

● Run the program assuming these new 
semantics.

● Treat the optimizer as an interpreter for 
these new semantics.



  

Information for a Local Analysis

● What direction are we going?
● Sometimes forward (available expressions)
● Sometimes backward (liveness analysis)

● How do we update information after 
processing a statement?
● What are the new semantics?

● What information do we know initially?



  

Formalizing Local Analyses

● Define an analysis of a basic block as a 
quadruple (D, V, F, I) where
● D is a direction (forwards or backwards)
● V is a set of values the program can have at 

any point.
● F is a family of transfer functions defining 

the meaning of any expression as a function
f : V → V.

● I is the initial information at the top (or 
bottom) of a basic block.



  

Available Expressions

a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

d = a + b;

e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;



  

Available Expressions

{ }
a = b;

{ a = b }
c = b;

{ a = b, c = b }
d = a + b;

{ a = b, c = b, d = a + b }
e = a + b;

{ a = b, c = b, d = a + b, e = a + b }
d = b;

{ a = b, c = b, d = b, e = a + b }
f = a + b;

{ a = b, c = b, d = b, e = a + b, f = a + b }



  

Available Expressions

● Direction: Forward
● Domain: Sets of expressions assigned to 

variables.
● Transfer functions: Given a set of 

variable assignments V and statement 
a = b + c:
● Remove from V any expression containing a 

as a subexpression.
● Add to V the expression a = b + c.

● Initial value: Empty set of expressions.



  

Liveness Analysis

a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;



  

Liveness Analysis

a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d }



  

Liveness Analysis

a = b;

c = a;

d = a + b;

e = d;

d = a;
{ b, d, e }

f = e;
{ b, d }



  

Liveness Analysis

a = b;

c = a;

d = a + b;

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }



  

Liveness Analysis

a = b;

c = a;

d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }



  

Liveness Analysis

a = b;

c = a;
{ a, b }
d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }



  

Liveness Analysis

a = b;
{ a, b }
c = a;
{ a, b }
d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }



  

Liveness Analysis

{ b }
a = b;
{ a, b }
c = a;
{ a, b }
d = a + b;
{ a, b, d }

e = d;
{ a, b, e }

d = a;
{ b, d, e }

f = e;
{ b, d }



  

Liveness Analysis

● Direction: Backwards
● Domain: Sets of variables.
● Transfer function: Given a set of variables V 

and statement a = b + c:
● Remove a from V (any previous value of a is now 

dead.)
● Add b and c to V (any previous value of b or c is 

now live.)

● Formally: fa = b + c (V) = (V – {a}) ∪ {b, c}

● Initial value: Depends on semantics of 
language.



  

Running Local Analyses

● Given an analysis (D, V, F, I) for a basic 
block.
● Assume that D is “forward;” analogous for the 

reverse case.

● Initially, set OUT[entry] to I.
● For each statement s, in order:

● Set IN[s] to OUT[prev], where prev is the 
previous statement.

● Set OUT[s] to fs(IN[s]), where fs is the transfer 
function for statement s.



  

Global Optimizations



  

Global Analysis

● A global analysis is an analysis that 
works on a control-flow graph as a 
whole.

● Substantially more powerful than a local 
analysis.
● (Why?)

● Substantially more complicated than a 
local analysis.
● (Why?)



  

Local vs. Global Analysis

● Many of the optimizations from local analysis can 
still be applied globally.
● We'll see how to do this later today.

● Certain optimizations are possible in global 
analysis that aren't possible locally:
● e.g. code motion: Moving code from one basic block 

into another to avoid computing values unnecessarily.

● We'll explore three analyses in detail:
● Global dead code elimination.
● Global constant propagation.
● Partial redundancy elimination.



  

Global Dead Code Elimination

● Local dead code elimination needed to 
know what variables were live on exit 
from a basic block.

● This information can only be computed 
as part of a global analysis.

● How do we modify our liveness analysis 
to handle a CFG?



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}

a = b + c
{a, b, c, d}

{a, b, c, d}

{a, b, c, d}



  

CFGs Without Loops

Entry

Exit

b = c + d

x = a + b
y = c + d

a = b + c



  

CFGs Without Loops

Entry

Exit

b = c + d

x = a + b
y = c + d

a = b + c



  

Major Changes, Part One

● In a local analysis, each statement has 
exactly one predecessor.

● In a global analysis, each statement may 
have multiple predecessors.

● A global analysis must have some means 
of combining information from all 
predecessors of a basic block.



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{b, c, d}
b = c + d
e = c + d
{b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{c, d}
b = c + d
e = c + d
{b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{c, d}
b = c + d
e = c + d
{b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{c, d}
b = c + d
e = c + d
{b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

CFGs Without Loops

Entry

{x, y}
Exit

{a, c, d}
b = c + d
e = c + d

{a, b, c, d}

{a, b, c, d}
x = a + b
y = c + d
{x, y}

{b, c, d}
x = c + d
a = b + c

{a, b, c, d}

{a, b, c, d}
y = a + b

{a, b, c, d}



  

Major Changes, Part II

● In a local analysis, there is only one possible 
path through a basic block.

● In a global analysis, there may be many 
paths through a CFG.

● May need to recompute values multiple times 
as more information becomes available.

● Need to be careful when doing this not to 
loop infinitely!
● (More on that later)



  

CFGs with Loops

● Up to this point, we've considered loop-free CFGs, 
which have only finitely many possible paths.

● When we add loops into the picture, this is no longer 
true.

● Not all possible loops in a CFG can be realized in the 
actual program.

Sound approximation: Assume that every possible 
path through the CFG corresponds to a valid execution.

Includes all realizable paths, but some additional paths as 
well.

May make our analysis less precise (but still sound).

Makes the analysis feasible; we'll see how later.



  

CFGs with Loops

● Up to this point, we've considered loop-free CFGs, 
which have only finitely many possible paths.

● When we add loops into the picture, this is no longer 
true.

● Not all possible loops in a CFG can be realized in the 
actual program.

Sound approximation: Assume that every possible 
path through the CFG corresponds to a valid execution.

Includes all realizable paths, but some additional paths as 
well.

May make our analysis less precise (but still sound).

Makes the analysis feasible; we'll see how later.

Top

x = 1

IfZ x Goto Top;

x = 0



  

CFGs with Loops

● Up to this point, we've considered loop-free CFGs, 
which have only finitely many possible paths.

● When we add loops into the picture, this is no longer 
true.

● Not all possible loops in a CFG can be realized in the 
actual program.

● Sound approximation: Assume that every possible 
path through the CFG corresponds to a valid execution.
● Includes all realizable paths, but some additional paths as 

well.
● May make our analysis less precise (but still sound).
● Makes the analysis feasible; we'll see how later.



  

CFGs With Loops



  

CFGs With Loops

Entry

{a}
Exit

{a, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{a, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b}



  

Major Changes, Part III

● In a local analysis, there is always a well-
defined “first” statement to begin 
processing.

● In a global analysis with loops, every 
basic block might depend on every other 
basic block.

● To fix this, we need to assign initial 
values to all of the blocks in the CFG.



  

CFGs With Loops

Entry

{a}
Exit

{a, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{}
c = a + b

{a, b, c}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c

{a}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a,{a, b, c} b}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}



  

CFGs With Loops

Entry

{a}
Exit

{c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}



  

CFGs With Loops

Entry

{a}
Exit

{a, c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}



  

CFGs With Loops

Entry

{a}
Exit

{a, c, d}
b = c + d
c = c + d
{a, b, c}

{a, b, c}
a = a + b
d = b + c
{a, c, d}

{b, c}
a = b + c
d = a + c
{a, b, c}

{a, b}
c = a + b

{a, b, c}



  

Summary of Differences

● Need to be able to handle multiple 
predecessors/successors for a basic block.

● Need to be able to handle multiple paths 
through the control-flow graph, and may 
need to iterate multiple times to compute 
the final value (but the analysis still needs 
to terminate!)

● Need to be able to assign each basic block 
a reasonable default value for before 
we've analyzed it.



  

Global Liveness Analysis

● Initially, set IN[s] = { } for each statement s.
● Set IN[exit] to the set of variables known to be live 

on exit (language-specific knowledge).
● Repeat until no changes occur:

● For each statement s of the form a = b + c, in any order 
you'd like:
– Set OUT[s] to set union of IN[p] for each successor p of s.
– Set IN[s] to (OUT[s] – a) ∪ {b, c}.

● Yet another fixed-point iteration!



  

Why Does This Work?

● To show correctness, we need to show that
● the algorithm eventually terminates, and
● when it terminates, it has a sound answer.

● Termination argument:
● Once a variable is discovered to be live during some point of the 

analysis, it always stays live.
● Only finitely many variables and finitely many places where a 

variable can become live.

● Soundness argument (sketch):
● Each individual rule, applied to some set, correctly updates 

liveness in that set.
● When computing the union of the set of live variables, a variable is 

only live if it was live on some path leaving the statement.



  

Theory to the Rescue

● Building up all of the machinery to design this 
analysis was tricky.

● The key ideas, however, are mostly independent 
of the analysis:
● We need to be able to compute functions describing 

the behavior of each statement.
● We need to be able to merge several 

subcomputations together.
● We need an initial value for all of the basic blocks.

● There is a beautiful formalism that captures 
many of these properties.



  

Meet Semilattices

● A meet semilattice is a ordering defined on a 
set of elements.

● Any two elements have some meet that is the 
largest element smaller than both elements.

● There is a unique top element, which is larger 
than all other elements.

● Intuitively:
● The meet of two elements represents combining 

information from two elements.
● The top element element represents “no information 

yet” or “the least conservative possible answer.”



  

Meet Semilattices for Liveness



  

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }



  

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }

Top 
Element



  

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }



  

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }



  

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }



  

Meet Semilattices for Liveness

{ }

{ a } { b } { c }

{ a, b } { a, c } { b, c }

{ a, b, c }



  

Formal Definitions

● A meet semilattice is a pair (D, ∧), where
● D is a domain of elements.
● ∧ is a meet operator that is

– idempotent: x ∧ x = x
– commutative: x ∧ y = y ∧ x
– associative: (x ∧ y) ∧ z = x ∧ (y ∧ z)

● If x ∧ y = z, we say that z is the meet or 
(greatest lower bound) of x and y.

● Every meet semilattice has a top element 
denoted ⊤ such that ⊤∧ x = x for all x.



  

An Example Semilattice

● The set of natural numbers and the max 
function.

● Idempotent
● max{a, a} = a

● Commutative
● max{a, b} = max{b, a}

● Associative
● max{a, max{b, c}} = max{max{a, b}, c}

● Top element is 0:
● max{0, a} = a



  

Is this a Meet Semilattice?



  

Is this a Meet Semilattice?

true

false



  

Is this a Meet Semilattice?

true

false

What is the meet 
operator here?



  

Is this a Meet Semilattice?



  

Is this a Meet Semilattice?

Animal

Cat Dog Pig



  

Is this a Meet Semilattice?



  

Is this a Meet Semilattice?

BunnyPuppyKitty

Cute



  

Is this a Meet Semilattice?

BunnyPuppyKitty

Cute

Thing



  

A Semilattice for Liveness

● Sets of live variables and the set union 
operation.

● Idempotent:
● x ∪ x = x

● Commutative:
● x ∪ y = y ∪ x

● Associative:
● (x ∪ y) ∪ z = x ∪ (y ∪ z)

● Top element:
● The empty set: Ø ∪ x = x



  

Semilattices and Program Analysis

● Semilattices naturally solve many of the problems 
we encounter in global analysis.

● How do we combine information from multiple 
basic blocks?
● Use the meet of all of those blocks.

● What value do we give to basic blocks we haven't 
seen yet?
● Use the top element.

● How do we know that the algorithm always 
terminates?
● Actually, we still don't!  More on that later.



  

A General Framework

● A global analysis is a tuple (D, V, ∧, F, I), where
● D is a direction (forward or backward)

– The order to visit statements within a basic block, not the 
order in which to visit the basic blocks.

● V is a set of values.
● ∧ is a meet operator over those values.
● F is a set of transfer functions f : V → V
● I is an initial value.

● The only difference from local analysis is the 
introduction of the meet operator.



  

Running Global Analyses

● Assume that (D, V, ∧, F, I) is a forward analysis.
● Set OUT[s] = ⊤ for all statements s.
● Set OUT[begin] = I.
● Repeat until no values change:

● For each statement s with predecessors
p1, p2, … , pn:

– Set IN[s] = OUT[p1] ∧ OUT[p2] ∧ … ∧ OUT[pn]

– Set OUT[s] = fs (IN[s])

● The order of this iteration does not matter.



  

For Comparison

● Set IN[s] = ⊤ for all 
statement s.

● Set IN[exit] = I.
● Repeat until no 

changes occur:
● For each statement s: 

– Set OUT[s] = 
IN[x1]∧…∧IN[xn] 
where x1, …, xn are 
successors of s.

– Set IN[s] = fs (OUT[s])

● Set IN[s] = { } for each 
statement s.

● Set IN[exit] to the set 
of variables known to 
be live on exit.

● Repeat until no 
changes occur:
● For each statement s of 

the form a = b + c:
– Set OUT[s] to set union of 

IN[x] for each successor x 
of s.

– Set IN[s] to 
(OUT[s] – a) ∪ {b, c}.



  

The Dataflow Framework

● This form of analysis is called the 
dataflow framework.

● Can be used to easily prove an analysis is 
sound.

● With certain restrictions, can be used to 
prove that an analysis eventually 
terminates.
● Again, more on that later.



  

Global Constant Propagation

● Constant propagation is an 
optimization that replaces each variable 
that is known to be a constant value with 
that constant.

● An elegant example of the dataflow 
framework.



  

Global Constant Propagation
start

end

x = 6;

y = x; z = y;

w = x;

z = x;

x = 4;



  

Global Constant Propagation
start

end

x = 6;

y = x; z = y;

w = x;

z = x;

x = 4;



  

Global Constant Propagation
start

end

x = 6;

y = 6; z = y;

w = 6;

z = x;

x = 4;



  

Constant Propagation Analysis

● In order to do a constant propagation, we need to 
track what values might be assigned to a variable 
at each program point.

● Every variable will either
● Never have a value assigned to it,
● Have a single constant value assigned to it,
● Have two or more constant values assigned to it, or
● Have a known non-constant value.

● Our analysis will propagate this information 
throughout a CFG to identify locations where a 
value is constant.



  

Properties of Constant Propagation

● For now, consider just some single variable x.
● At each point in the program, we know one of three 

things about the value of x:
● x is definitely not a constant, since it's been assigned two 

values or assigned a value that we know isn't a constant.
● x is definitely a constant and has value k.
● We have never seen a value for x.

● Note that the first and last of these are not the same!
● The first one means that there may be a way for x to have 

multiple values.
● The last one means that x never had a value at all.



  

Defining a Meet Operator

● The meet of any two different constants is Not a 
Constant.

● (If the variable might have two different values on 
entry to a statement, it cannot be a constant.)

● The meet of Not a Constant and any other value is 
Not a Constant.

● (If on some path the value is known not to be a 
constant, then on entry to a statement its value can't 
possibly be a constant.)

● The meet of Undefined and any other value is that 
other value.

● (If x has no value on some path and does have a value 
on some other path, we can just pretend it always had 
the assigned value.)



  

A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is 
shown here:

 

 

 

  
● Note:

● The meet of any two different constants is Not a 
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a 

Constant.

Not a Constant



  

A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is 
shown here:

 

 

 

  
● Note:

● The meet of any two different constants is Not a 
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a 

Constant.

Not a Constant

This lattice is infinitely wide!



  

A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is 
shown here:

 

 

 

  
● Note:

● The meet of any two different constants is Not a 
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a 

Constant.

Not a Constant



  

A Semilattice for Constant Propagation

0-1 +1-2 +2... ...

Undefined

● One possible semilattice for this analysis is 
shown here:

 

 

 

  
● Note:

● The meet of any two different constants is Not a 
Constant.

● The meet of Undefined and any value is that value.
● The meet of Not a Constant and any value is Not a 

Constant.

Not a Constant



  

Global Constant Propagation
start

end

x = 6;

y = x; z = y;

w = x;

z = x;

x = 4;



  

Global Constant Propagation
start

end

x = 6;
Undefined

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

x = 6;
Undefined

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

x = 6;
Undefined

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

Undefined

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

y = x;
Undefined

z = y;
Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

Undefined
z = y;

Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

w = x;
Undefined

z = x;
Undefined

x = 4;
Undefined

0-1 +1... ...

Undefined

Not a Constant



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

Undefined

z = x;
Undefined

x = 4;
Undefined

0-1 +1... ...

Undefined

Not a Constant



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

Undefined

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

z = x;
Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

Undefined

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

x = 4;
Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

6
x = 4;

Undefined



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

Undefined

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

6
z = x;

6

6
x = 4;

4

0-1 +1... ...

Undefined

Not a Constant



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

6

6
x = 4;

4

0-1 +1... ...

Undefined

Not a Constant



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

6

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

6
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = x;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = x;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = 6;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = 6;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

Undefined

end

Undefined
x = 6;

6

6
y = 6;

6

6
z = y;

6

6
w = 6;

6

Not Const
z = x;

Not Const

Not Const
x = 4;

4



  

Global Constant Propagation
start

end

x = 6;

y = 6; z = y;

w = 6;

z = x;

x = 4;



  

Dataflow for Constant Propagation

● Direction: Forward
● Semilattice: Defined earlier
● Transfer functions:

● fx = k (V) = k (assign a constant)

● fx=a+b (V) = Not a Constant (assign non-constant)

● fy = a + b (V) = V (unrelated assignment)

● Initial value: x is Undefined
● (When might we use some other value?)



  

Next Time

● More on Semilattices
● Semilattices and orderings.
● Monotonic transfer functions.
● Termination and correctness.

● Code motion optimizations
● Loop-invariant code motion.
● Partial redundancy elimination.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200

