Type-Checking

Announcements

- Written Assignment 2 due today at 5:00PM.
- Programming Project 2 due Friday at 11:59PM.
- Please contact us with questions!
- Stop by office hours!
- Email the staff list!
- Ask on Piazza!

Announcements

- Midterm exam one week from today, July 25th from 11:00AM - 1:00PM here in Thornton 102.
- Covers material up to and including Earley parsing.
- Review session in class next Monday.
- Practice exam released; solutions will be distributed on Monday.
- SCPD Students: Exam will be emailed out on July 25th at 11:00AM. You can start the exam any time between 11:00AM on July 25th and 11:00AM on July 26th.

Where We Are

Lexical Analysis
Syntax Analysis
Semantic Analysis
IR Generation
IR Optimization
Code Generation
Optimization

Machine Code

Review from Last Time

```
class MyClass implements MyInterface {
    string myInteger;
    void doSomething() {
    int[] x;
    x = new string;
    x[5] = myInteger * y;
    }
    void doSomething() {
    }
    int fibonacci(int n) {
        return doSomething() + fibonacci(n - 1);
    }
}
```


Review from Last Time

```
class MyClass implements MyInterface
```

 string myInteger;
 void doSomething() \{
 int[] \(x\);
 Can't multiply $x=$ new string;
strings
Interface not declared

Wrong type

$$
\mathrm{x}[5] \Rightarrow \text { myInteger } * \mathrm{y}
$$

$$
\text { \} Variable not }
$$ void doSomething() \{ Can't redefine declared functions

 \}
 int fibonacci(int n) \{
return doSomething() + fibonacci (n - 1);
\} \quad Can't add void

Review from Last Time

```
class MyClass implements MyInterface \{
    string myInteger;
```

 void doSomething() \{
 int[] \(x\);
 Can't multiply $x=$ new string;
Wrong type
strings
$\mathrm{x}[5] \Rightarrow$ myInteger $* \mathrm{y}$;
Variable not
void doSomething() \{ can't redefine declared
functions
\}
int fibonacci(int n) \{
return doSomething() + fibonacci (n - 1);
\}

Review from Last Time

```
    class Myclass implements MyInterface {
        string myInteger;
    void doSomething() {
        int[] x;
Can't multiply }x=\mathrm{ new string;
                                    Wrong type
    strings
                        x[5] \Longrightarrow myInteger * y; 4
    } Variable not
    void doSomething() { declared
    }
    int fibonacci(int n) {
        return doSomething() + fibonacci(n - 1);
    } - Can't add void
}
                                    No main function
```


Review from Last Time

class MyClass implements MyInterface \{

 string myInteger;void doSomething() \{
int[] x;
Can't multiply $x=$ new string;
strings

$$
\mathrm{x}[5] \Rightarrow \text { myInteger } * \mathrm{y}
$$

\}
void doSomething() \{
\}
int fibonacci(int n) \{ return doSomething() + fibonacci (n - 1);
\} \quad Can't add void

Review from Last Time

class MyClass implements MyInterface \{

 string myInteger;void doSomething() \{
int[] x;
Can't multiply $x=$ new string;
strings

```
                        x[5] => myInteger * y;
    }
void doSomething() {
    }
    int fibonacci(int n) {
        return doSomething() + fibonacci(n - 1);
                                Can't add void
```

\}

What Remains to Check?

- Type errors.
- Today:
- What are types?
- What is type-checking?
- A type system for Decaf.

What is a Type?

- This is the subject of some debate.
- To quote Alex Aiken:
- "The notion varies from language to language.
- The consensus:
- A set of values.
- A set of operations on those values"
- Type errors arise when operations are performed on values that do not support that operation.

Types of Type-Checking

- Static type checking.
- Analyze the program during compile-time to prove the absence of type errors.
- Never let bad things happen at runtime.
- Dynamic type checking.
- Check operations at runtime before performing them.
- More precise than static type checking, but usually less efficient.
- (Why?)
- No type checking.
- Throw caution to the wind!

Type Systems

- The rules governing permissible operations on types forms a type system.
- Strong type systems are systems that never allow for a type error.
- Java, Python, JavaScript, LISP, Haskell, etc.
- Weak type systems can allow type errors at runtime.
- C, C++

Type Wars

- Endless debate about what the "right" system is.
- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.
- Strongly-typed languages are more robust, weakly-typed systems are often faster.

Type Wars

- Endless debate about what the "right" system is.
- Dynamic type systems make it easier to prototype; static type systems have fewer bugs.
- Strongly-typed languages are more robust, weakly-typed systems are often faster.
- I'm staying out of this!

Our Focus

- Decaf is typed statically and weakly:
- Type-checking occurs at compile-time.
- Runtime errors like dereferencing null or an invalid object are allowed.
- Decaf uses class-based inheritance.
- Decaf distinguishes primitive types and classes.

Typing in Decaf

Static Typing in Decaf

- Static type checking in Decaf consists of two separate processes:
- Inferring the type of each expression from the types of its components.
- Confirming that the types of expressions in certain contexts matches what is expected.
- Logically two steps, but you will probably combine into one pass.

An Example

$$
\begin{aligned}
& \text { while (numBitsSet }(x+5)<=10) \text { \{ } \\
& \text { if (1.0 + 4.0) \{ } \\
& \text { /* ... * / } \\
& \text { \} } \\
& \text { while (5 == null) \{ } \\
& \text { /* ... * / } \\
& \text { \} } \\
& \text { \} }
\end{aligned}
$$

An Example

while (numBitsSet (x + 5) <= 10) \{

$$
\begin{aligned}
& \text { if }(1.0+4.0) \quad\{ \\
& \} \\
& \text { /*... */ } \\
& \text { while (5 == null) \{ } \\
& \text { \} } \quad . . . * /
\end{aligned}
$$

An Example

$$
\begin{aligned}
& \text { while (numBitsSet }(x+5)<=10)\{ \\
& \text { if }(1.0+4.0)\{ \\
& \text { \} } / * \ldots * / \\
& \text { while }(5==\text { null })\{ \\
& \text { \} } / * \ldots * /
\end{aligned}
$$

$$
\text { \} }
$$

An Example

$$
\text { \} }
$$

$$
\begin{aligned}
& \text { while (numBitsSet }(x+5)<=10) \text { \{ } \\
& \begin{array}{l}
\text { if }(1.0+4.0) \\
\} \quad / * \ldots /
\end{array} \\
& \text { Well-typed } \\
& \text { while (5 == null) \{ expression with } \\
& \text { /* ... * / } \\
& \text { wrong type. }
\end{aligned}
$$

An Example

$$
\begin{aligned}
& \text { while (numBitsSet }(x+5)<=10)\{ \\
& \text { if }(1.0+4.0)\{ \\
& \} \quad / * \ldots * / \\
& \text { while }(5==\text { null })\{ \\
& \quad\} \quad \ldots * /
\end{aligned}
$$

An Example

$$
\begin{aligned}
& \text { while (numBitsSet }(x+5)<=10)\{ \\
& \text { if }(1.0+4.0)\{ \\
& \} \quad{ }^{*} \ldots * / \\
& \text { while }(5==\text { null })\{ \\
& \} \quad \ldots * /
\end{aligned} \begin{aligned}
& \text { Expression with } \\
& \text { type error }
\end{aligned}
$$

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Inferring Expression Types

- How do we determine the type of an expression?
- Think of process as logical inference.

Type Checking as Proofs

- We can think of syntax analysis as proving claims about the types of expressions.
- We begin with a set of axioms, then apply our inference rules to determine the types of expressions.
- Many type systems can be thought of as proof systems.

Sample Inference Rules

- "If \mathbf{x} is an identifier that refers to an object of type \mathbf{t}, the expression \mathbf{x} has type t."
- "If \mathbf{e} is an integer constant, \mathbf{e} has type int."
- "If the operands \mathbf{e}_{1} and \mathbf{e}_{2} of $\mathbf{e}_{1}+\mathbf{e}_{2}$ are known to have types int and int, then $\mathbf{e}_{1}+\mathbf{e}_{2}$ has type int."

Formalizing our Notation

- We will encode our axioms and inference rules using this syntax:
$\frac{\text { Preconditions }}{\text { Postconditions }}$
- This is read "if preconditions are true, we can infer postconditions."

Examples of Formal Notation

$\mathrm{A} \rightarrow \mathrm{t} \omega$ is a production.
$t \in \operatorname{FIRST}(\mathbf{A})$
$\mathbf{A} \rightarrow \boldsymbol{\omega}$ is a production. $t \in \operatorname{FIRST}^{*}(\boldsymbol{\omega})$
$t \in \operatorname{FIRST}(\mathbf{A})$
$\mathbf{A} \rightarrow \boldsymbol{\varepsilon}$ is a production.
$\varepsilon \in \operatorname{FIRST}(\mathbf{A})$
$\mathbf{A} \rightarrow \boldsymbol{\omega}$ is a production. $\boldsymbol{\varepsilon} \in \operatorname{FIRST}^{*}(\boldsymbol{\omega})$
$\boldsymbol{\varepsilon} \in \operatorname{FIRST}(\mathbf{A})$

Formal Notation for Type Systems

- We write

$$
\vdash \mathbf{e}: \mathbf{T}
$$

if the expression \mathbf{e} has type \mathbf{T}.

- The symbol \vdash means "we can infer..."

Our Starting Axioms

Our Starting Axioms

\vdash true : bool
\vdash false : bool

Some Simple Inference Rules

Some Simple Inference Rules

i is an integer constant
$\vdash i$: int
s is a string constant
$\vdash s$: string
d is a double constant
$\vdash d$: double

More Complex Inference Rules

More Complex Inference Rules

More Complex Inference Rules

More Complex Inference Rules

Even More Complex Inference Rules

Even More Complex Inference Rules

T is a primitive type
$\vdash \mathrm{e}_{1}=\mathrm{e}_{2}$: bool

$$
\begin{aligned}
& \vdash \mathrm{e}_{1}: \mathrm{T} \\
& \vdash \mathrm{e}_{2}: \mathrm{T}
\end{aligned}
$$

T is a primitive type
$\vdash \mathrm{e}_{1}!=\mathrm{e}_{2}$: bool

Why Specify Types this Way?

- Gives a rigorous definition of types independent of any particular implementation.
- No need to say "you should have the same type rules as my reference compiler."
- Gives maximum flexibility in implementation.
- Can implement type-checking however you want, as long as you obey the rules.
- Allows formal verification of program properties.
- Can do inductive proofs on the structure of the program.
- This is what's used in the literature.
- Good practice if you want to study types.

A Problem

A Problem

x is an identifier.

A Problem

x is an identifier.
$\vdash x: ? ?$

$$
\begin{aligned}
& \text { How do we know the } \\
& \text { type of } x \text { if we don't } \\
& \text { know what it refers to? }
\end{aligned}
$$

An Incorrect Solution

An Incorrect Solution

x is an identifier.
x is in scope with type T.
$\vdash x: T$

An Incorrect Solution

x is an identifier. x is in scope with type T.
\longrightarrow

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
    /* ... */
    }
}
```


An Incorrect Solution

x is an identifier. x is in scope with type T.
$\vdash x: T$

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
    /* ... * /
    }
}
```


An Incorrect Solution

x is an identifier. x is in scope with type T.
$\vdash x: T$

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
        /* ... * /
    }
}
```


An Incorrect Solution

x is an identifier. x is in scope with type T.
$\vdash x: T$

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
        /* ... * /
    }
```


An Incorrect Solution

x is an identifier. x is in scope with type T.
\longrightarrow

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
        /* ... * /
    }
}
```


An Incorrect Solution

x is an identifier. x is in scope with type T.

$$
\vdash x: T
$$

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
        /* ... * /
    }
```


An Incorrect Solution

x is an identifier. x is in scope with type T.

$$
\vdash x: T
$$

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
        /* ... * /
    }
```


An Incorrect Solution

x is an identifier. x is in scope with type T.
$\vdash x: T$
d is a double constant
$\vdash d$: double

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
    /* ... * /
    }
```


An Incorrect Solution

x is an identifier. x is in scope with type T.

$$
\vdash x: T
$$

d is a double constant
$\vdash d$: double
int MyFunction(int x) \{ \{
double x;
\}
if (x == 1.5) \{
/* ... */
\}

Facts
$\qquad \vdash x:$ double
$\vdash x:$ int
$\vdash 1.5:$ double

Facts

An Incorrect Solution

x is an identifier. x is in scope with type T.

$$
\vdash x: T
$$

```
int MyFunction(int x) {
    {
        double x;
    }
    if (x == 1.5) {
    /* ... * /
    }

\section*{An Incorrect Solution}
\(x\) is an identifier. \(x\) is in scope with type T.
\[
\vdash x: T
\]
```

int MyFunction(int x) {
{
double x;
}
if (x == 1.5) {
/* ... * /
}

An Incorrect Solution

x is an identifier. x is in scope with type T.

$$
\vdash x: T
$$

```
int MyFunction(int x) {
    {
double x;
\[
\}
\]
\[
\text { if }(x==1.5)
\]
/* ... */
\[
\}
\]
```


An Incorrect Solution

x is an identifier. x is in scope with type T.
$\vdash x: T$
int MyFunction(int x) \{ \{
double x;
\}
if ($x==1.5$) \{
/* ... * /
\}

An Incorrect Solution

x is an identifier. x is in scope with type T.

$$
\vdash x: T
$$

```
int MyFunction(int x) {
    {
double x;
\[
\}
\]
\[
\text { if }(x==1.5) \quad\{
\]
/* ... */
\[
\}
\]
```


Strengthening our Inference Rules

- The facts we're proving have no context.
- We need to strengthen our inference rules to remember under what circumstances the results are valid.

Adding Scope

- We write

$$
\mathbf{S} \vdash \mathbf{e}: \mathbf{T}
$$

if, in scope \mathbf{S}, expression \mathbf{e} has type \mathbf{T}.

- Types are now proven relative to the scope they are in.

Old Rules Revisited

$S \vdash$ true : bool

i is an integer constant
$\mathrm{S} \vdash i$: int
$S \vdash$ false: bool
s is a string constant
$S \vdash s:$ string
d is a double constant
$S \vdash d:$ double
$S \vdash e_{1}$: double
S $\vdash \mathrm{e}_{2}$: double
$\mathrm{S} \vdash \mathrm{e}_{1}+\mathrm{e}_{2}$: double
$S \vdash e_{1}$: int
$S \vdash \mathrm{e}_{2}$: int
$S \vdash e_{1}+e_{2}$ int

A Correct Rule

x is an identifier.
x is a variable in scope S with type T.

$$
S \vdash x: T
$$

A Correct Rule

x is an identifier.
x is a variable in scope S with type T.

$$
S \vdash x: T
$$

Rules for Functions

$S \vdash f\left(e_{1}, \ldots, e_{n}\right): ? ?$

Rules for Functions

f is an identifier.

$$
\mathrm{S} \vdash \mathrm{f}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right): ? ?
$$

Rules for Functions

f is an identifier.
f is a non-member function in scope S.

$$
\mathrm{S} \vdash \mathrm{f}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right): ? ?
$$

Rules for Functions

f is an identifier.
f is a non-member function in scope S.
f has type $\left(T_{1}, \ldots, T_{n}\right) \rightarrow U$

$$
\mathrm{S} \vdash \mathrm{f}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right): ? ?
$$

Rules for Functions

f is an identifier.
f is a non-member function in scope S.
f has type $\left(T_{1}, \ldots, T_{n}\right) \rightarrow U$

$$
\frac{S \vdash e_{i}: T_{i} \text { for } 1 \leq i \leq n}{S \vdash f\left(e_{1}, \ldots, e_{n}\right): ? ?}
$$

Rules for Functions

f is an identifier.
f is a non-member function in scope S.
f has type $\left(T_{1}, \ldots, T_{n}\right) \rightarrow U$
$\frac{S \vdash e_{i}: T_{i} \text { for } 1 \leq i \leq n}{S \vdash f\left(e_{1}, \ldots, e_{n}\right): U}$

Rules for Functions

Read rules
like this

f is a non-member function in scope S.
f has type $\left(T_{1}, \ldots, T_{n}\right) \rightarrow U$
$\frac{S \vdash e_{i}: T_{i} \text { for } 1 \leq i \leq n}{S \vdash f\left(e_{1}, \ldots, e_{n}\right): U}$

Rules for Arrays

$\mathrm{S} \vdash \mathrm{e}_{1}: T[]$
$\mathrm{S} \vdash \mathrm{e}_{2}:$ int
$\mathrm{S} \vdash \mathrm{e}_{1}\left[\mathrm{e}_{2}\right]: \mathrm{T}$

Rule for Assignment

$$
\begin{gathered}
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T} \\
\hline \mathrm{~S} \vdash \mathrm{e}_{1}=\mathrm{e}_{2}: \mathrm{T}
\end{gathered}
$$

Rule for Assignment

Why isn't this rule a problem for this statement?

$$
5=x ;
$$

Rule for Assignment

$$
\begin{gathered}
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T} \\
\hline \mathrm{~S} \vdash \mathrm{e}_{1}=\mathrm{e}_{2}: \mathrm{T}
\end{gathered}
$$

If Derived extends Base, will this rule work for this code?

> Base myBase;
> Derived myDerived;
> myBase = myDerived;

Typing with Classes

- How do we factor inheritance into our inference rules?
- We need to consider the shape of class hierarchies.

Single Inheritance

Multiple Inheritance

Properties of Inheritance Structures

- Any type is convertible to itself. (reflexivity)
- If A is convertible to B and B is convertible to C, then A is convertible to C. (transitivity)
- If A is convertible to B and B is convertible to A , then A and B are the same type. (antisymmetry)
- This defines a partial order over types.

Types and Partial Orders

- We say that $\mathrm{A} \leq \mathrm{B}$ if A is convertible to B .
- We have that
- A $\leq \mathrm{A}$
- $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \leq \mathrm{C}$ implies $\mathrm{A} \leq \mathrm{C}$
- $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \leq \mathrm{A}$ implies $\mathrm{A}=\mathrm{B}$

Updated Rule for Assignment

$$
\mathrm{S} \vdash \mathrm{e}_{1}=\mathrm{e}_{2}: ? ?
$$

Updated Rule for Assignment

$$
\begin{aligned}
& S \vdash e_{1}: T_{1} \\
& S \vdash e_{2}: T_{2}
\end{aligned}
$$

$$
\mathrm{S} \vdash \mathrm{e}_{1}=\mathrm{e}_{2}: ? ?
$$

Updated Rule for Assignment

$\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1}$
$\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2}$
$\mathrm{~T}_{2} \leq \mathrm{T}_{1}$
$\mathrm{~S} \vdash \mathrm{e}_{1}=\mathrm{e}_{2}: ? ?$

Updated Rule for Assignment

Updated Rule for Assignment

Can we do better than this?

Updated Rule for Assignment

$\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1}$
$\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2}$
$\mathrm{~T}_{2} \leq \mathrm{T}_{1}$
$\mathrm{~S} \vdash \mathrm{e}_{1}=\mathrm{e}_{2}: \mathrm{T}_{2}$

Updated Rule for Assignment

Not required in your
semantic analyzer, but easy
extra credit!

Updated Rule for Comparisons

Updated Rule for Comparisons

$$
\begin{aligned}
& S \vdash e_{1}: T \\
& S \vdash e_{2}: T
\end{aligned}
$$

T is a primitive type
$\mathrm{S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2}$: bool

Updated Rule for Comparisons

$$
\begin{aligned}
& S \vdash e_{1}: T \\
& S \vdash e_{2}: T
\end{aligned}
$$

T is a primitive type
$S \vdash \mathrm{e}_{1}==\mathrm{e}_{2}$: bool

Updated Rule for Comparisons

Can we unify
these rules?

- $\quad \begin{aligned} & \mathrm{S} \vdash \mathrm{e}_{1}: T \\ & \mathrm{~S} \vdash \mathrm{e}_{2}: T\end{aligned}$

T is a primitive type
$\mathrm{S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2}$: bool

The Shape of Types

The Shape of Types

The Shape of Types

Extending Convertibility

- If A is a primitive or array type, A is only convertible to itself.
- More formally, if A and B are types and A is a primitive or array type:
- $\mathrm{A} \leq \mathrm{B}$ implies $\mathrm{A}=\mathrm{B}$
- $\mathrm{B} \leq \mathrm{A}$ implies $\mathrm{A}=\mathrm{B}$

Updated Rule for Comparisons

$$
\begin{aligned}
& S \vdash e_{1}: T \\
& S \vdash e_{2}: T
\end{aligned}
$$

T is a primitive type
$\mathrm{S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2}$: bool
$\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1}$
$S \vdash e_{2}: T_{2}$
T_{1} and T_{2} are of class type.
$\mathrm{T}_{1} \leq \mathrm{T}_{2}$ or $\mathrm{T}_{2} \leq \mathrm{T}_{1}$
$\mathrm{S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2}$: bool

Updated Rule for Comparisons

$$
\begin{aligned}
& S \vdash e_{1}: T \\
& S \vdash e_{2}: T
\end{aligned}
$$

T is a primitive type
$\mathrm{S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2}$: bool

$$
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1}
$$

$$
\mathrm{S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2}
$$

T_{1} and T_{2} are of class type.
$\mathrm{T}_{1} \leq \mathrm{T}_{2}$ or $\mathrm{T}_{2} \leq \mathrm{T}_{1}$
$\mathrm{S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2}$: bool

$$
\begin{gathered}
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{2} \text { or } \mathrm{T}_{2} \leq \mathrm{T}_{1} \\
\hline \mathrm{~S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2}: \text { bool }
\end{gathered}
$$

Updated Rule for Comparisons

$$
\begin{aligned}
& \mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
& S \vdash e_{2}: T_{2} \\
& S \vdash \mathrm{e}_{2}: T \\
& T \text { is a primitive type } \\
& T_{1} \text { and } T_{2} \text { are of class type. } \\
& \mathrm{S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2} \text { : bool } \\
& S \vdash e_{1}: T_{1} \\
& S \vdash e_{2}: T_{2} \\
& \mathrm{~T}_{1} \leq \mathrm{T}_{2} \text { or } \mathrm{T}_{2} \leq \mathrm{T}_{1} \\
& \mathrm{~S} \vdash \mathrm{e}_{1}==\mathrm{e}_{2} \text { : bool }
\end{aligned}
$$

Updated Rule for Function Calls

f is an identifier.
f is a non-member function in scope S.
f has type $\left(T_{1}, \ldots, T_{n}\right) \rightarrow U$
$S \vdash e_{i}: R_{i}$ for $1 \leq i \leq n$
$\frac{R_{i} \leq T_{i} \text { for } 1 \leq i \leq n}{S \vdash f\left(e_{1}, \ldots, e_{n}\right): U}$

A Tricky Case

S \vdash null : ??

Back to the Drawing Board

Back to the Drawing Board

Handling null

- Define a new type corresponding to the type of the literal null; call it "null type."
- Define null type \leq A for any class type A.
- The null type is (typically) not accessible to programmers; it's only used internally.
- Many programming languages have types like these.

A Tricky Case

S \vdash null : ??

A Tricky Case

$S \vdash$ null : null type

A Tricky Case

$S \vdash$ null : null type

Object-Oriented Considerations

S is in scope of class T.

$$
S \vdash \text { this : } T
$$

Object-Oriented Considerations

S is in scope of class T.

$$
S \vdash \text { this : } T
$$

T is a class type. $S \vdash e$: int
$S \vdash$ NewArray (e, T) : T[]
4

Why don't we need to check if

$$
T \text { is void? }
$$

What's Left?

- We're missing a few language constructs:
- Member functions.
- Field accesses.
- Miscellaneous operators.
- Good practice to fill these in on your own.

Typing is Nuanced

- The ternary conditional operator ? : evaluates an expression, then produces one of two values.
- Works for primitive types:
- int $\mathrm{x}=$ random()? 137 : 42;
- Works with inheritance:
- Base b = isB? new Base : new Derived;
- What might the typing rules look like?

A Proposed Rule

 $\overline{\mathrm{S} \vdash \text { cond } ? \mathrm{e}_{1}: \mathrm{e}_{2}: ? ?}$
A Proposed Rule

$S \vdash$ cond : bool

$\overline{\mathrm{S} \vdash \text { cond } ? \mathrm{e}_{1}: \mathrm{e}_{2}: ? ?}$

A Proposed Rule

$$
\begin{gathered}
S \vdash \text { cond }: \text { bool } \\
S \vdash e_{1}: T_{1} \\
S \vdash e_{2}: T_{2}
\end{gathered}
$$

$$
\overline{\mathrm{S} \vdash \text { cond } ? \mathrm{e}_{1}: \mathrm{e}_{2}: ? ?}
$$

A Proposed Rule

$$
\begin{gathered}
\mathrm{S} \vdash \text { cond : bool } \\
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{2} \text { or } \mathrm{T}_{2} \leq \mathrm{T}_{1} \\
\hline \mathrm{~S} \vdash \text { cond } ? \mathrm{e}_{1}: \mathrm{e}_{2}: ? ?
\end{gathered}
$$

A Proposed Rule

$$
\begin{gathered}
\mathrm{S} \vdash \text { cond : bool } \\
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2} \\
\mathrm{~T} \leq \mathrm{T}_{2} \text { or } \mathrm{T}_{2} \leq \mathrm{T}_{1} \\
\mathrm{~S} \vdash \text { cond } ? \mathrm{e}_{1}: \mathrm{e}_{2}: \max \left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)
\end{gathered}
$$

A Proposed Rule

$$
\begin{gathered}
\mathrm{S} \vdash \text { cond : bool } \\
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{2} \text { or } \mathrm{T}_{2} \leq \mathrm{T}_{1} \\
\mathrm{~S} \vdash \text { cond } ? \mathrm{e}_{1}: \mathrm{e}_{2}: \max \left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)
\end{gathered}
$$

A Proposed Rule

$$
\begin{gathered}
\mathrm{S} \vdash \text { cond : bool } \\
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{2} \text { or } \mathrm{T}_{2} \leq \mathrm{T}_{1}
\end{gathered}
$$

$\mathrm{S} \vdash$ cond $? \mathrm{e}_{1}: \mathrm{e}_{2}: \max \left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$

A Proposed Rule

$$
\begin{gathered}
\mathrm{S} \vdash \text { cond : bool } \\
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{2} \text { or } \mathrm{T}_{2} \leq \mathrm{T}_{1}
\end{gathered}
$$

$\mathrm{S} \vdash$ cond $? \mathrm{e}_{1}: \mathrm{e}_{2}: \max \left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$
Super

Base

Is this really what we want?

A Small Problem

$$
\begin{gathered}
\mathrm{S} \vdash \text { cond : bool } \\
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2} \\
\mathrm{~T}_{1} \leq \mathrm{T}_{2} \text { or } \mathrm{T}_{2} \leq \mathrm{T}_{1} \\
\mathrm{~S} \vdash \text { cond } ? \mathrm{e}_{1}: \mathrm{e}_{2}: \max \left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)
\end{gathered}
$$

A Small Problem

Base $=$ random() ?

```
    new Derived1 : new Derived2;
```


A Small Problem

Base $=$ random() ?

```
    new Derived1 : new Derived2;
```


Least Upper Bounds

- An upper bound of two types A and B is a type C such that $A \leq C$ and $B \leq C$.
- The least upper bound of two types A and B is a type C such that:
- C is an upper bound of A and B.
- If C^{\prime} is an upper bound of A and B , then $\mathrm{C} \leq \mathrm{C}^{\prime}$.
- When the least upper bound of A and B exists, we denote it A v B.
- (When might it not exist?)

A Better Rule

Base $=$ random() ?
new Derived1 : new Derived2;

... that still has problems

Base $=$ random() ?
new Derived1 : new Derived2;

... that still has problems

Base $=$ random() ?
new Derived1 : new Derived2;

Multiple Inheritance is Messy

- Type hierarchy is no longer a tree.
- Two classes might not have a least upper bound.
- Occurs C++ because of multiple inheritance and in Java due to interfaces.
- Not a problem in Decaf; there is no ternary conditional operator.
- How to fix?

Minimal Upper Bounds

- An upper bound of two types A and B is a type C such that $\mathrm{A} \leq \mathrm{C}$ and $\mathrm{B} \leq \mathrm{C}$.
- A minimal upper bound of two types A and B is a type C such that:
- C is an upper bound of A and B .
- If C^{\prime} is an upper bound of C , then it is not true that $\mathrm{C}^{\prime}<\mathrm{C}$.
- Minimal upper bounds are not necessarily unique.
- A least upper bound must be a minimal upper bound, but not the other way around.

A Correct Rule

$$
\begin{gathered}
\mathrm{S} \vdash \text { cond : bool } \\
\mathrm{S} \vdash \mathrm{e}_{1}: \mathrm{T}_{1} \\
\mathrm{~S} \vdash \mathrm{e}_{2}: \mathrm{T}_{2}
\end{gathered}
$$

T is a minimal upper bound of T_{1} and T_{2}

$$
\mathrm{S} \vdash \text { cond } ? \mathrm{e}_{1}: \mathrm{e}_{2}: \mathrm{T}
$$

Base1 = random()?

```
    new Derived1 : new Derived2;
```


A Correct Rule

Basel = random()?
$S \vdash$ cold : bool
$S \vdash e_{1}: T_{1}$
$S \vdash e_{2}: T_{2}$
T is a minimal upper bound of T_{1} and T_{2}

$$
\mathrm{S} \vdash \text { cont } ? \mathrm{e}_{1}: \mathrm{e}_{2}: \mathrm{T}
$$

Can prove both that
expression has type Base 1 and that expression has type Base.
new Derived : new Derived2;

So What?

- Type-checking can be tricky.
- Strongly influenced by the choice of operators in the language.
- Strongly influenced by the legal type conversions in a language.
- In $\mathrm{C}++$, the previous example doesn't compile.
- In Java, the previous example does compile, but the language spec is enormously complicated.
- See §15.12.2.7 of the Java Language Specification.

Next Time

- Checking Statement Validity
- When are statements legal?
- When are they illegal?
- Practical Concerns
- How does function overloading work?
- How do functions interact with inheritance?

