
  

Type-Checking



  

Announcements

● Written Assignment 2 due today at 
5:00PM.

● Programming Project 2 due Friday at 
11:59PM.

● Please contact us with questions!
● Stop by office hours!
● Email the staff list!
● Ask on Piazza!



  



  

Announcements

● Midterm exam one week from today, July 25th 
from 11:00AM – 1:00PM here in Thornton 102.

● Covers material up to and including Earley 
parsing.

● Review session in class next Monday.
● Practice exam released; solutions will be 

distributed on Monday.
● SCPD Students: Exam will be emailed out on 

July 25th at 11:00AM.  You can start the exam 
any time between 11:00AM on July 25th and 
11:00AM on July 26th.



  

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code



  

Review from Last Time
class MyClass implements MyInterface { 
    string myInteger; 
 
    void doSomething() { 
        int[] x;
        x = new string;
 
        x[5] = myInteger * y; 
    } 
    void doSomething() { 
         
    } 
    int fibonacci(int n) { 
        return doSomething() + fibonacci(n – 1); 
    } 
} 
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} 

Interface not 
declared

Wrong type

Variable not 
declared

Can't multiply 
strings

Can't redefine 
functions

Can't add void
No main function
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Review from Last Time
class MyClass implements MyInterface { 
    string myInteger; 
 
    void doSomething() { 
        int[] x;
        x = new string; 
 
        x[5] = myInteger * y; 
    } 
    void doSomething() { 
         
    } 
    int fibonacci(int n) { 
        return doSomething() + fibonacci(n – 1); 
    } 
} 

Wrong type
Can't multiply 

strings

Can't add void



  

What Remains to Check?

● Type errors.
● Today:

● What are types?
● What is type-checking?
● A type system for Decaf.



  

What is a Type?

● This is the subject of some debate.
● To quote Alex Aiken:

● “The notion varies from language to 
language.

● The consensus:
– A set of values.
– A set of operations on those values”

● Type errors arise when operations are 
performed on values that do not support 
that operation.



  

Types of Type-Checking

● Static type checking.
● Analyze the program during compile-time to prove the 

absence of type errors.
● Never let bad things happen at runtime.

● Dynamic type checking.
● Check operations at runtime before performing them.
● More precise than static type checking, but usually 

less efficient.
● (Why?)

● No type checking.
● Throw caution to the wind!



  

Type Systems

● The rules governing permissible 
operations on types forms a type 
system.

● Strong type systems are systems that 
never allow for a type error.
● Java, Python, JavaScript, LISP, Haskell, etc.

● Weak type systems can allow type 
errors at runtime.
● C, C++



  

Type Wars

● Endless debate about what the “right” 
system is.

● Dynamic type systems make it easier to 
prototype; static type systems have fewer 
bugs.

● Strongly-typed languages are more 
robust, weakly-typed systems are often 
faster.



  

Type Wars

● Endless debate about what the “right” 
system is.

● Dynamic type systems make it easier to 
prototype; static type systems have fewer 
bugs.

● Strongly-typed languages are more 
robust, weakly-typed systems are often 
faster.

● I'm staying out of this!



  

Our Focus

● Decaf is typed statically and weakly:
● Type-checking occurs at compile-time.
● Runtime errors like dereferencing null or an 

invalid object are allowed.

● Decaf uses class-based inheritance.
● Decaf distinguishes primitive types and 

classes.



  

Typing in Decaf



  

Static Typing in Decaf

● Static type checking in Decaf consists of 
two separate processes:
● Inferring the type of each expression from 

the types of its components.
● Confirming that the types of expressions in 

certain contexts matches what is expected.

● Logically two steps, but you will probably 
combine into one pass.



  

An Example

while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* … */
    }

    while (5 == null) {
        /* … */
    }

}
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An Example
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}

Well-typed 
expression with 
wrong type.
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An Example

while (numBitsSet(x + 5) <= 10) {

    if (1.0 + 4.0) {
        /* … */
    }

    while (5 == null) {
        /* … */
    }

} Expression with 
type error



  

Inferring Expression Types

● How do we determine the type of an 
expression?

● Think of process as logical inference.
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Identifiery BoolConstanttruebool bool

boolbool
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Type Checking as Proofs

● We can think of syntax analysis as 
proving claims about the types of 
expressions.

● We begin with a set of axioms, then 
apply our inference rules to determine 
the types of expressions.

● Many type systems can be thought of as 
proof systems.



  

Sample Inference Rules

● “If x is an identifier that refers to an 
object of type t, the expression x has 
type t.”

● “If e is an integer constant, e has type 
int.”

● “If the operands e1 and e2 of e1 + e2 are 
known to have types int and int, then
e1 + e2 has type int.”



  

Postconditions

Preconditions

Formalizing our Notation

● We will encode our axioms and inference 
rules using this syntax:

 

  
● This is read “if preconditions are true, we 

can infer postconditions.”



  

Examples of Formal Notation

t ∈ FIRST(A)

A → tω is a production.

ε ∈ FIRST(A)

A → ε is a production.

t ∈ FIRST(A)

A → ω is a production.
t ∈ FIRST*(ω)

ε ∈ FIRST(A)

A → ω is a production.
ε ∈ FIRST*(ω)



  

Formal Notation for Type Systems

● We write

⊢ e : T
if the expression e has type T.

● The symbol ⊢ means “we can infer...”



  

Our Starting Axioms



  

Our Starting Axioms

⊢ true : bool ⊢ false : bool



  

Some Simple Inference Rules



  

⊢ i : int

i is an integer constant

⊢ s : string

s is a string constant

Some Simple Inference Rules

⊢ d : double

d is a double constant



  

More Complex Inference Rules



  

More Complex Inference Rules

⊢ e
1
 + e2 : int

⊢ e
1
 : int

⊢ e
2
 : int

⊢ e
1
 + e2 : double

⊢ e
1
 : double

⊢ e
2
 : double



  

More Complex Inference Rules
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2
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 + e2 : double
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1
 : double

⊢ e
2
 : double

If we can show that e1 
and e2 have type int…



  

More Complex Inference Rules

⊢ e
1
 + e2 : int

⊢ e
1
 : int

⊢ e
2
 : int

⊢ e
1
 + e2 : double

⊢ e
1
 : double

⊢ e
2
 : double

If we can show that e1 
and e2 have type int…

… then we can show 
that e1 + e2 has 
type int as well



  

Even More Complex Inference Rules



  

Even More Complex Inference Rules

⊢ e
1
 == e2 : bool

 ⊢ e
1
 : T

 ⊢ e
2
 : T

T is a primitive type

⊢ e
1
 != e2 : bool

 ⊢ e
1
 : T

 ⊢ e
2
 : T

T is a primitive type



  

Why Specify Types this Way?

● Gives a rigorous definition of types independent of any 
particular implementation.
● No need to say “you should have the same type rules as my 

reference compiler.”

● Gives maximum flexibility in implementation.
● Can implement type-checking however you want, as long as you 

obey the rules.

● Allows formal verification of program properties.
● Can do inductive proofs on the structure of the program.

● This is what's used in the literature.
● Good practice if you want to study types.



  

A Problem
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x is an identifier.



  

A Problem

⊢ x : ??

x is an identifier.

How do we know the 
type of x if we don't 
know what it refers to?



  

An Incorrect Solution



  

An Incorrect Solution

⊢ x : T

x is an identifier.
x is in scope with type T.



  

An Incorrect Solution

int MyFunction(int x) {
    {
        double x;
    }

    if (x == 1.5) {
        /* … */
    }
}

⊢ x : T

x is an identifier.
x is in scope with type T.
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An Incorrect Solution

int MyFunction(int x) {
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    }
}

Facts
⊢ x : double

⊢ x : int
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An Incorrect Solution

int MyFunction(int x) {
    {
        double x;
    }

    if (x == 1.5) {
        /* … */
    }
}

Facts
⊢ x : double

⊢ x : int

⊢ 1.5 : double

⊢ x : T

x is an identifier.
x is in scope with type T.

⊢ e
1
 == e2 : bool

 ⊢ e
1
 : T

 ⊢ e
2
 : T

T is a primitive type

⊢ x == 1.5 : bool



  

Strengthening our Inference Rules

● The facts we're proving have no context.
● We need to strengthen our inference 

rules to remember under what 
circumstances the results are valid.



  

Adding Scope

● We write

S ⊢ e : T
if, in scope S, expression e has type T.

● Types are now proven relative to the 
scope they are in.



  

Old Rules Revisited

S ⊢ true : bool S ⊢ false : bool

S ⊢ i : int

i is an integer constant

S ⊢ s : string

s is a string constant

S ⊢ d : double

d is a double constant

S ⊢ e
1
 + e2 : int

S ⊢ e
1
 : int

S ⊢ e
2
 : int

S ⊢ e
1
 + e2 : double

S ⊢ e
1
 : double

S ⊢ e
2
 : double



  

A Correct Rule

S ⊢ x : T

x is an identifier.
x is a variable in scope S with type T.



  

A Correct Rule

S ⊢ x : T

x is an identifier.
x is a variable in scope S with type T.



  

Rules for Functions

S ⊢ f(e1, ..., en)  : ??

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S  e⊢
i
 : T

i
  for 1 ≤ i ≤ n
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Rules for Functions

S ⊢ f(e1, ..., en)  : U
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f is a non-member function in scope S.
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1
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Rules for Functions

S ⊢ f(e1, ..., en)  : U

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S  e⊢
i
 : T

i
  for 1 ≤ i ≤ n

Read rules 
like this



  

Rules for Arrays

S ⊢ e1[e2] : T

S  e⊢
1
 : T[]

S  e⊢
2
 : int



  

Rule for Assignment

S ⊢ e1 = e2 : T

S  e⊢
1
 : T

S  e⊢
2
 : T



  

Rule for Assignment

S ⊢ e1 = e2 : T

S  e⊢
1
 : T

S  e⊢
2
 : T

Why isn't this rule a problem for this statement?

5 = x;



  

Rule for Assignment

S ⊢ e1 = e2 : T

S  e⊢
1
 : T

S  e⊢
2
 : T

If Derived extends Base, will this rule work for this code?

Base    myBase;
Derived myDerived;

myBase = myDerived;



  

Typing with Classes

● How do we factor inheritance into our 
inference rules?

● We need to consider the shape of class 
hierarchies.



  

Single Inheritance

Instructor

LecturerProfessor TA

Keith JinchaoAlexAiken

Animal

Man Bear Pig



  

Multiple Inheritance

Animal

Man Bear Pig

ManBearPig

Instructor

LecturerProfessor TA

Keith JinchaoAlexAiken



  

Properties of Inheritance Structures

● Any type is convertible to itself. (reflexivity)
● If A is convertible to B and B is convertible to 

C, then A is convertible to C. (transitivity)
● If A is convertible to B and B is convertible to 

A, then A and B are the same type. 
(antisymmetry)

● This defines a partial order over types.



  

Types and Partial Orders

● We say that A ≤ B if A is convertible to B.
● We have that

● A ≤ A
● A ≤ B and B ≤ C implies A ≤ C
● A ≤ B and B ≤ A implies A = B



  

Updated Rule for Assignment

S ⊢ e1 = e2 : ??

S  e⊢
1
 : T

1

S  e⊢
2
 : T

2

T
2
 ≤ T

1
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Updated Rule for Assignment

S ⊢ e1 = e2 : T1

S  e⊢
1
 : T

1

S  e⊢
2
 : T

2

T
2
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Updated Rule for Assignment

S ⊢ e1 = e2 : T1

S  e⊢
1
 : T

1

S  e⊢
2
 : T

2

T
2
 ≤ T

1

Can we do better than this?



  

Updated Rule for Assignment

S ⊢ e1 = e2 : T2

S  e⊢
1
 : T

1

S  e⊢
2
 : T

2

T
2
 ≤ T

1



  

Not required in your 
semantic analyzer, but easy 

extra credit!

Updated Rule for Assignment

S ⊢ e1 = e2 : T2

S  e⊢
1
 : T

1

S  e⊢
2
 : T

2

T
2
 ≤ T

1



  

Updated Rule for Comparisons
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 : T

S  e⊢
2
 : T

T is a primitive type
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1
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Updated Rule for Comparisons

S ⊢ e
1
 == e2 : bool

S  e⊢
1
 : T

S  e⊢
2
 : T

T is a primitive type

S ⊢ e
1
 == e2 : bool

S  e⊢
1
 : T

1

S  e⊢
2
 : T

2

T
1
 and T

2
 are of class type.

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Can we unify 
these rules?



  

The Shape of Types

Engine

DieselEngineCarEngine

DieselCarEngine
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The Shape of Types

Engine

DieselEngineCarEngine

DieselCarEngine

bool string doubleint
Array
Types



  

Extending Convertibility

● If A is a primitive or array type, A is only 
convertible to itself.

● More formally, if A and B are types and A 
is a primitive or array type:
● A ≤ B implies A = B
● B ≤ A implies A = B
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S ⊢ e
1
 == e2 : bool

S  e⊢
1
 : T

1

S  e⊢
2
 : T

2

T
1
 and T

2
 are of class type.

T
1
 ≤ T

2
 or T

2
 ≤ T

1

S ⊢ e
1
 == e2 : bool

S  e⊢
1
 : T

1

S  e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
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Updated Rule for Function Calls

S ⊢ f(e1, ..., en)  : U

f is an identifier.
f is a non-member function in scope S.

f has type (T
1
, …, T

n
) → U

S  e⊢
i
 : R

i
  for 1 ≤ i ≤ n

R
i
 ≤ T

i
  for 1 ≤ i ≤ n



  

A Tricky Case

S ⊢ null : ??
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Handling null

● Define a new type corresponding to the 
type of the literal null; call it “null 
type.”

● Define null type ≤ A for any class type A.

● The null type is (typically) not accessible 
to programmers; it's only used internally.

● Many programming languages have 
types like these.



  

A Tricky Case

S ⊢ null : ??



  

A Tricky Case

S ⊢ null : null type



  

A Tricky Case

S ⊢ null : null type



  

Object-Oriented Considerations

S ⊢ new T : T

T is a class type.

S ⊢ NewArray(e, T) : T[]

S ⊢ e : int

S ⊢ this : T

S is in scope of class T.



  

Object-Oriented Considerations

S ⊢ new T : T

T is a class type.

S ⊢ NewArray(e, T) : T[]

S ⊢ e : int

Why don't we 
need to check if 

T is void?

S ⊢ this : T

S is in scope of class T.



  

What's Left?

● We're missing a few language constructs:
● Member functions.
● Field accesses.
● Miscellaneous operators.

● Good practice to fill these in on your 
own.



  

Typing is Nuanced

● The ternary conditional operator ? : 
evaluates an expression, then produces 
one of two values.

● Works for primitive types:
● int x = random()? 137 : 42;

● Works with inheritance:
● Base b = isB? new Base : new Derived;

● What might the typing rules look like?



  

A Proposed Rule

S ⊢ cond ? e
1
 : e2 : ??
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S  ⊢ cond : bool
S  e⊢

1
 : T

1

S  e⊢
2
 : T

2

T
1
 ≤ T

2
 or T

2
 ≤ T

1

Is this really 
what we want?

Base

Derived1 Derived2

Super



  

A Small Problem
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Least Upper Bounds

● An upper bound of two types A and B is a 
type C such that A ≤ C and B ≤ C.

● The least upper bound of two types A and 
B is a type C such that:
● C is an upper bound of A and B.
● If C' is an upper bound of A and B, then C ≤ C'.

● When the least upper bound of A and B 
exists, we denote it A ∨ B.
● (When might it not exist?)



  

A Better Rule

S ⊢ cond ? e
1
 : e2 : T

S  ⊢ cond : bool
S  e⊢

1
 : T

1

S  e⊢
2
 : T

2

T = T
1
 ∨ T

2
Base

Derived1 Derived2

Base = random()? 
          new Derived1 : new Derived2;

Super



  

… that still has problems

S ⊢ cond ? e
1
 : e2 : T

S  ⊢ cond : bool
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1
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 ∨ T

2

Base1

Derived1 Derived2

Base2

Base = random()? 
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… that still has problems

S ⊢ cond ? e
1
 : e2 : T

S  ⊢ cond : bool
S  e⊢

1
 : T

1

S  e⊢
2
 : T

2

T = T
1
 ∨ T

2

Base1

Derived1 Derived2

Base2

Base = random()? 
          new Derived1 : new Derived2;



  

Multiple Inheritance is Messy

● Type hierarchy is no longer a tree.
● Two classes might not have a least upper 

bound.
● Occurs C++ because of multiple 

inheritance and in Java due to interfaces.
● Not a problem in Decaf; there is no 

ternary conditional operator.
● How to fix?



  

Minimal Upper Bounds

● An upper bound of two types A and B is a type C 
such that A ≤ C and B ≤ C.

● A minimal upper bound of two types A and B is a 
type C such that:
● C is an upper bound of A and B.
● If C' is an upper bound of C, then it is not true that C' < C.

● Minimal upper bounds are not necessarily unique.
● A least upper bound must be a minimal upper bound, 

but not the other way around.



  

A Correct Rule

S ⊢ cond ? e
1
 : e2 : T

S  ⊢ cond : bool
S  e⊢

1
 : T

1

S  e⊢
2
 : T

2

T is a minimal upper bound of T
1
 and T

2

Base1

Derived1 Derived2

Base2

Base1 = random()? 
           new Derived1 : new Derived2;



  

A Correct Rule

S ⊢ cond ? e
1
 : e2 : T

S  ⊢ cond : bool
S  e⊢

1
 : T

1

S  e⊢
2
 : T

2

T is a minimal upper bound of T
1
 and T

2

Base1

Derived1 Derived2

Base2

Base1 = random()? 
           new Derived1 : new Derived2;

Can prove both that 
expression has type Base1 
and that expression has 

type Base2.



  

So What?

● Type-checking can be tricky.
● Strongly influenced by the choice of operators in the 

language.
● Strongly influenced by the legal type conversions in a 

language.
● In C++, the previous example doesn't compile.
● In Java, the previous example does compile, but the 

language spec is enormously complicated.
● See §15.12.2.7 of the Java Language Specification.



  

Next Time

● Checking Statement Validity
● When are statements legal?
● When are they illegal?

● Practical Concerns
● How does function overloading work?
● How do functions interact with inheritance?
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