
  

Lexical Analysis



  

Announcements

● Programming Assignment 1 Out
● Due Monday, July 9 at 11:59 PM.

● Four handouts (all available online):
● Decaf Specification
● Lexical Analysis
● Intro to flex
● Programming Assignment 1



  

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code
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w h i l e ( i  < z ) \n \t + i p ;

while (ip < z)
    ++ip;

p + +

T_While ( T_Ident < T_Ident ) ++ T_Ident
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While
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<

Ident Ident
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do[for] = new 0;
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do[for] = new 0;

T_Do [ T_For T_New T_IntConst

0
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This is called a token.  You can 
think of it as an enumerated type 
representing what logical entity we 
read out of the source code.

This is called a token.  You can 
think of it as an enumerated type 
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read out of the source code.
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called a lexeme.
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from which we made the token is 

called a lexeme.
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Sometimes we will discard a lexeme 
rather than storing it for later use. 
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has no bearing on the meaning of 

the program.
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( T_IntConst
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Some tokens can have 
attributes that store 
extra information about 
the token.  Here we 
store which integer is 

represented.

Some tokens can have 
attributes that store 
extra information about 
the token.  Here we 
store which integer is 

represented.



  

Goals of Lexical Analysis

● Convert from physical description of a program 
into sequence of of tokens.
● Each token represents one logical piece of the source 

file – a keyword, the name of a variable, etc.

● Each token is associated with a lexeme.
● The actual text of the token: “137,” “int,” etc.

● Each token may have optional attributes.
● Extra information derived from the text – perhaps a 

numeric value.

● The token sequence will be used in the parser to 
recover the program structure.



  

Choosing Tokens



  

What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
    cout << k << endl;
}
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++



  

What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
    cout << k << endl;
}

for               {
int               }
<<                ;
=                 <
(                 [
)                 ]
++

Identifier
IntegerConstant



  

Choosing Good Tokens

● Very much dependent on the language.
● Typically:

● Give keywords their own tokens.
● Give different punctuation symbols their own 

tokens.
● Group lexemes representing identifiers, 

numeric constants, strings, etc. into their own 
groups.

● Discard irrelevant information (whitespace, 
comments)



  

Scanning is Hard

● FORTRAN: Whitespace is irrelevant
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Scanning is Hard

● FORTRAN: Whitespace is irrelevant

 

DO 5 I = 1,25

 DO5I  = 1.25

 
● Can be difficult to tell when to partition 

input.

Thanks to Prof. Alex Aiken
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Scanning is Hard

● C++: Nested template declarations

 
(vector < (vector < (int >> myVector)))

 

● Again, can be difficult to determine 
where to split.

Thanks to Prof. Alex Aiken
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Scanning is Hard

● PL/1: Keywords can be used as 
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

● Can be difficult to determine how to label 
lexemes.

Thanks to Prof. Alex Aiken



  

Challenges in Scanning

● How do we determine which lexemes are 
associated with each token?

● When there are multiple ways we could 
scan the input, how do we know which 
one to pick?

● How do we address these concerns 
efficiently?



  

Associating Lexemes with Tokens



  

Lexemes and Tokens

● Tokens give a way to categorize lexemes by 
what information they provide.

● Some tokens might be associated with only a 
single lexeme:
● Tokens for keywords like if and while probably 

only match those lexemes exactly.
● Some tokens might be associated with lots of 

different lexemes:
● All variable names, all possible numbers, all 

possible strings, etc.



  

Sets of Lexemes

● Idea: Associate a set of lexemes with each 
token.

● We might associate the “number” token 
with the set { 0, 1, 2, …, 10, 11, 12, … }

● We might associate the “string” token 
with the set { "", "a", "b", "c", … }

● We might associate the token for the 
keyword while with the set { while }.



  

How do we describe which (potentially 
infinite) set of lexemes is associated with 

each token type?



  

Formal Languages

● A formal language is a set of strings.
● Many infinite languages have finite descriptions:

● Define the language using an automaton.
● Define the language using a grammar.
● Define the language using a regular expression.

● We can use these compact descriptions of the 
language to define sets of strings.

● Over the course of this class, we will use all of 
these approaches.



  

Regular Expressions

● Regular expressions are a family of 
descriptions that can be used to capture 
certain languages (the regular 
languages).

● Often provide a compact and human-
readable description of the language.

● Used as the basis for numerous software 
systems, including the flex tool we will 
use in this course.



  

Atomic Regular Expressions

● The regular expressions we will use in 
this course begin with two simple 
building blocks.

● The symbol ε is a regular expression 
matches the empty string.

● For any symbol a, the symbol a is a 
regular expression that just matches a.



  

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a regular 
expression represents the concatenation of the 
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 | R2 is a regular 
expression representing the union of R1 and R2.

● If R is a regular expression, R* is a regular expression for 
the Kleene closure of R.

● If R is a regular expression, (R) is a regular expression 
with the same meaning as R.



  

Operator Precedence

● Regular expression operator precedence 
is

(R)

R*

R1R2

R1 | R2 

● So ab*c|d is parsed as ((a(b*))c)|d



  

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing 
00 as a substring:

(0 | 1)*00(0 | 1)*
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● Here is a regular expression for strings of length 
exactly four:

(0|1){4}

0000
1010
1111
1000



  

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that 
contain at most one zero:



  

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that 
contain at most one zero:

1*(0 | ε)1*
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● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that 
contain at most one zero:

1*(0 | ε)1*
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● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that 
contain at most one zero:

1*(0 | ε)1*

11110111
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Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that 
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0



  

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that 
contain at most one zero:

1*0?1*

11110111
111111
0111

0



  

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a 
represents “some letter.”

● A regular expression for email addresses is

aa* (.aa*)* aa*.aa*@ (.aa*)*
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● Suppose our alphabet is a, @, and ., where a 
represents “some letter.”
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Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a 
represents “some letter.”

● A regular expression for email addresses is

a+ (.a+)* a+.a+@ (.a+)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org
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Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a 
represents “some letter.”

● A regular expression for email addresses is

a+ (.a+)* a+@ (.a+)+

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov 



  

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a 
represents “some letter.”

● A regular expression for email addresses is

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov 

a+(.a+)*@a+(.a+)+



  

Applied Regular Expressions

● Suppose that our alphabet is all ASCII 
characters.

● A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)
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● Suppose that our alphabet is all ASCII 
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912
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Applied Regular Expressions

● Suppose that our alphabet is all ASCII 
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)



  

Applied Regular Expressions

● Suppose that our alphabet is all ASCII 
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?[0123456789]*[02468]



  

Applied Regular Expressions

● Suppose that our alphabet is all ASCII 
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?[0-9]*[02468]



  

Matching Regular Expressions



  

Implementing Regular Expressions

● Regular expressions can be implemented 
using finite automata.

● There are two main kinds of finite 
automata:
● NFAs (nondeterministic finite automata), 

which we'll see in a second, and
● DFAs (deterministic finite automata), which 

we'll see later.

● Automata are best explained by example...
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" "start
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Each circle is a state of the 
automaton.  The automaton's 
configuration is determined 
by what state(s) it is in.

Each circle is a state of the 
automaton.  The automaton's 
configuration is determined 
by what state(s) it is in.

A Simple Automaton
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These arrows are called 
transitions.  The automaton 
changes which state(s) it is in 

by following transitions.

These arrows are called 
transitions.  The automaton 
changes which state(s) it is in 

by following transitions.

A Simple Automaton
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" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

The automaton takes a string 
as input and decides whether 

to accept or reject the string.

The automaton takes a string 
as input and decides whether 

to accept or reject the string.
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" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "
The double circle indicates that this 
state is an accepting state.  The 
automaton accepts the string if it 

ends in an accepting state.

The double circle indicates that this 
state is an accepting state.  The 
automaton accepts the string if it 

ends in an accepting state.
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here, so the automaton 
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" "start

A,B,C,...,Z

A Simple Automaton

" A B C

This is not an accepting 
state, so the automaton 

rejects.

This is not an accepting 
state, so the automaton 

rejects.
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A More Complex Automaton

0   
1 0

1  
0 1

start  
             0, 1

Notice that there are multiple transitions 
defined here on 0 and 1.  If we read a 
0 or 1 here, we follow both transitions 

and enter multiple states.

Notice that there are multiple transitions 
defined here on 0 and 1.  If we read a 
0 or 1 here, we follow both transitions 

and enter multiple states.
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A More Complex Automaton

0   
1 0

1  
0 1

start  
             0, 1

0 1 1 1 0 1
Since we are in at least 
one accepting state, the 

automaton accepts.

Since we are in at least 
one accepting state, the 

automaton accepts.
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An Even More Complex Automaton
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a, c

b, c

start  

    ε          

ε

    ε          

c

b

a

These are called -transitionsε .  These 
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Simulating an NFA

● Keep track of a set of states, initially the start 
state and everything reachable by ε-moves.

● For each character in the input:
● Maintain a set of next states, initially empty.
● For each current state:

– Follow all transitions labeled with the current letter.
– Add these states to the set of new states.

● Add every state reachable by an ε-move to the set of 
next states.

● Complexity: O(mn2) for strings of length m and 
automata with n states.



  

From Regular Expressions to NFAs

● There is a (beautiful!) procedure from converting a 
regular expression to an NFA.

● Associate each regular expression with an NFA with 
the following properties:

● There is exactly one accepting state.

● There are no transitions out of the accepting state.

● There are no transitions into the starting state.

● These restrictions are stronger than necessary, but make the 
construction easier.

start



  

Base Cases

εstart

Automaton for ε

astart

Automaton for single character a
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Overall Result

● Any regular expression of length n can 
be converted into an NFA with O(n) 
states.

● Can determine whether a string of length 
m matches a regular expression of length 
n in time O(mn2).

● We'll see how to make this O(m) later 
(this is independent of the complexity of 
the regular expression!)



  

A Quick Diversion...



  

I am having some difficulty compiling a C++ program that I've 
written.

This program is very simple and, to the best of my knowledge, 
conforms to all the rules set forth in the C++ Standard. [...]

The program is as follows:

Source: 
http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers

http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers
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I am having some difficulty compiling a C++ program that I've 
written.

This program is very simple and, to the best of my knowledge, 
conforms to all the rules set forth in the C++ Standard. [...]

The program is as follows:

Source: 
http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers

> g++ helloworld.png
helloworld.png: file not recognized: File format not recognized
collect2: ld returned 1 exit status

http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers


  

Challenges in Scanning

● How do we determine which lexemes are 
associated with each token?

● When there are multiple ways we could 
scan the input, how do we know which 
one to pick?

● How do we address these concerns 
efficiently?
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Conflict Resolution

● Assume all tokens are specified as 
regular expressions.

● Algorithm: Left-to-right scan.
● Tiebreaking rule one: Maximal munch.

● Always match the longest possible prefix of 
the remaining text.
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Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*
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Implementing Maximal Munch

● Given a set of regular expressions, how 
can we use them to implement maximum 
munch?

● Idea:
● Convert expressions to NFAs.
● Run all NFAs in parallel, keeping track of the 

last match.
● When all automata get stuck, report the last 

match and restart the search at that point.
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Implementing Maximal Munch



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B



  

A Minor Simplification



  

A Minor Simplification

start d o

start d o u b l e

start Σ



  

A Minor Simplification

start d o

start d o u b l e

start Σ



  

A Minor Simplification

d o

d o u b l e

Σ

   ε

ε

   ε
start      

 



  

A Minor Simplification

d o

d o u b l e

Σ

   ε

ε

   ε
start      

 Build a single automaton 
that runs all the matching 

automata in parallel.

Build a single automaton 
that runs all the matching 

automata in parallel.



  

A Minor Simplification

d o

d o u b l e

Σ

   ε

ε

   ε
start      

 



  

A Minor Simplification

d o

d o u b l e

Σ

   ε

ε

   ε
start      

 Annotate each accepting 
state with which automaton 

it came from.
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More Tiebreaking

● When two regular expressions apply, 
choose the one with the greater 
“priority.”

● Simple priority system: pick the rule 
that was defined first.
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problem?



  

One Last Detail...

● We know what to do if multiple rules 
match.

● What if nothing matches?
● Trick: Add a “catch-all” rule that matches 

any character and reports an error.



  

Summary of Conflict Resolution

● Construct an automaton for each regular 
expression.

● Merge them into one automaton by 
adding a new start state.

● Scan the input, keeping track of the last 
known match.

● Break ties by choosing higher-
precedence matches.

● Have a catch-all rule to handle errors.



  

Challenges in Scanning

● How do we determine which lexemes are 
associated with each token?

● When there are multiple ways we could 
scan the input, how do we know which 
one to pick?

● How do we address these concerns 
efficiently?
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DFAs

● The automata we've seen so far have all 
been NFAs.

● A DFA is like an NFA, but with tighter 
restrictions:
● Every state must have exactly one 

transition defined for every letter.
● ε-moves are not allowed.
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Code for DFAs
int kTransitionTable[kNumStates][kNumSymbols] = { 
     {0, 0, 1, 3, 7, 1, …}, 
      …
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    …
};
bool simulateDFA(string input) {
    int state = 0;
    for (char ch: input)
        state = kTransitionTable[state][ch];
    return kAcceptTable[state];
}
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};
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    …
};
bool simulateDFA(string input) {
    int state = 0;
    for (char ch: input)
        state = kTransitionTable[state][ch];
    return kAcceptTable[state];
}

Runs in time O(m) 
on a string of 

length m.

Runs in time O(m) 
on a string of 

length m.



  

Speeding up Matching

● In the worst-case, an NFA with n states 
takes time O(mn2) to match a string of 
length m.

● DFAs, on the other hand, take only O(m).
● There is another (beautiful!) algorithm to 

convert NFAs to DFAs.

Lexical 
Specification

Regular
Expressions NFA DFA

Table-Driven
DFA



  

Subset Construction

● NFAs can be in many states at once, while 
DFAs can only be in a single state at a time.

● Key idea: Make the DFA simulate the 
NFA.

● Have the states of the DFA correspond to 
the sets of states of the NFA.

● Transitions between states of DFA 
correspond to transitions between sets of 
states in the NFA.
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Modified Subset Construction

● Instead of marking whether a state is 
accepting, remember which token type it 
matches.

● Break ties with priorities.
● When using DFA as a scanner, consider 

the DFA “stuck” if it enters the state 
corresponding to the empty set.



  

Performance Concerns

● The NFA-to-DFA construction can 
introduce exponentially many states.

● Time/memory tradeoff:
● Low-memory NFA has higher scan time.
● High-memory DFA has lower scan time.

● Could use a hybrid approach by 
simplifying NFA before generating code.



  

Real-World Scanning: Python



  

w h i l e ( i  < z ) \n \t + i p ;

while (ip < z)
    ++ip;

p + +

T_While ( T_Ident < T_Ident ) ++ T_Ident

ip z ip

While

++

Ident

<

Ident Ident

ip z ip



  

Python Blocks

● Scoping handled by whitespace:
if w == z:

    a = b

    c = d

else:

    e = f

g = h

● What does that mean for the scanner?



  

Whitespace Tokens

● Special tokens inserted to indicate changes in 
levels of indentation.

● NEWLINE marks the end of a line.
● INDENT indicates an increase in 

indentation.
● DEDENT indicates a decrease in indentation.
● Note that INDENT and DEDENT encode 

change in indentation, not the total amount of 
indentation.



  

if w == z:
    a = b
    c = d
else:
    e = f
g = h

Scanning Python



  

if w == z:
    a = b
    c = d
else:
    e = f
g = h

if ident

w

== ident

z

: NEWLINE

INDENT ident

a

= ident

b

NEWLINE

ident

c

= ident

d

NEWLINE

DEDENT else :

INDENT ident

e

= ident

f

NEWLINE

DEDENT ident

g

= ident

h

NEWLINE

Scanning Python

NEWLINE



  

if w == z: {
    a = b;
    c = d;
} else {
    e = f;
}
g = h;

if ident

w

== ident

z

: NEWLINE

INDENT ident

a

= ident

b

NEWLINE

ident

c

= ident

d

NEWLINE

DEDENT else :

INDENT ident

e

= ident

f

NEWLINE

DEDENT ident

g

= ident

h

NEWLINE

Scanning Python

NEWLINE



  

if w == z: {
    a = b;
    c = d;
} else {
    e = f;
}
g = h;

if ident

w

== ident

z

:

{ ident

a

= ident

b

;

ident

c

= ident

d

;

} else :

ident

e

= ident

f

;

} ident

g

= ident

h

;

Scanning Python

{



  

Where to INDENT/DEDENT?

● Scanner maintains a stack of line indentations 
keeping track of all indented contexts so far.

● Initially, this stack contains 0, since initially the 
contents of the file aren't indented.

● On a newline:
● See how much whitespace is at the start of the line.
● If this value exceeds the top of the stack:

– Push the value onto the stack.
– Emit an INDENT token.

● Otherwise, while the value is less than the top of the stack:
– Pop the stack.
– Emit a DEDENT token.

Source: http://docs.python.org/reference/lexical_analysis.html

http://docs.python.org/reference/lexical_analysis.html


  

Interesting Observation

● Normally, more text on a line translates 
into more tokens.

● With DEDENT, less text on a line often 
means more tokens:

if cond1:
    if cond2:
        if cond3:
            if cond4:
                if cond5:
                    statement1
statement2



  

Summary

● Lexical analysis splits input text into tokens 
holding a lexeme and an attribute.

● Lexemes are sets of strings often defined 
with regular expressions.

● Regular expressions can be converted to 
NFAs and from there to DFAs.

● Maximal-munch using an automaton allows 
for fast scanning.

● Not all tokens come directly from the source 
code.



  

Next Time

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

(Plus a little bit here)
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