Lexical Analysis

Announcements

- Programming Assignment 1 Out
- Due Monday, July 9 at 11:59 PM.
- Four handouts (all available online):
- Decaf Specification
- Lexical Analysis
- Intro to flex
- Programming Assignment 1

Where We Are

 Code

$$
\begin{gathered}
\text { while (ip < z) } \\
\text { ++ip; }
\end{gathered}
$$

$$
\begin{gathered}
\text { while (ip }<~ z) \\
++i p ;
\end{gathered}
$$

while (ip $<z$)
++ip;

$$
\text { do }[\text { for }]=\text { new } 0 ;
$$

\mathbf{d}	\mathbf{o}	$[$	\mathbf{f}	\mathbf{o}	\mathbf{r}	$]$		$=$		\mathbf{n}	\mathbf{e}	\mathbf{w}		0	i

$$
\text { do }[\text { for }]=\text { new } 0 ;
$$

do[for] = new 0;

Scanning a Source File

Scanning a Source File

	w h	i	1	e	(1	3	7	$<$	i	,	+ i			

Scanning a Source File

T_While

Scanning a Source File

The piece of the original program from which we made the token is called a lexeme.

T_While

This is called a token. You can think of it as an enumerated type representing what logical entity we read out of the source code.

Scanning a Source File

T_While

Scanning a Source File

T_While

Scanning a Source File

T_While

Scanning a Source File

T_While
Sometimes we will discard a lexeme rather than storing it for later use. Here, we ignore whitespace, since it has no bearing on the meaning of the program.

Scanning a Source File

T_While

Scanning a Source File

w	w h	i	1	e	(3	7	$<$	i			+		

T_While

Scanning a Source File

	w h	i	1	e	(1	3	7	$<$	i			+		

T_While

Scanning a Source File

T_While

Scanning a Source File

T_While

Scanning a Source File

T_While	T_IntConst
137	

Scanning a Source File

T_While (T_IntConst \begin{tabular}{|c}

Some tokens can have
attributes that store
extra information about
the token. Here we
store which integer is
represented.

\hline
\end{tabular}

Goals of Lexical Analysis

- Convert from physical description of a program into sequence of of tokens.
- Each token represents one logical piece of the source file - a keyword, the name of a variable, etc.
- Each token is associated with a lexeme.
- The actual text of the token: "137," "int," etc.
- Each token may have optional attributes.
- Extra information derived from the text - perhaps a numeric value.
- The token sequence will be used in the parser to recover the program structure.

Choosing Tokens

What Tokens are Useful Here?

for (int $k=0 ; k<m y A r r a y[5] ;++k)\{$ cout << k << endl;
\}

What Tokens are Useful Here?

for (int $k=0 ; k<m y A r r a y[5] ;++k)\{$ cout << k << endl;
\}

What Tokens are Useful Here?

for (int $k=0 ; k<m y A r r a y[5] ;++k)\{$ cout << k << endl;
\}

Identifier
IntegerConstant

Choosing Good Tokens

- Very much dependent on the language.
- Typically:
- Give keywords their own tokens.
- Give different punctuation symbols their own tokens.
- Group lexemes representing identifiers, numeric constants, strings, etc. into their own groups.
- Discard irrelevant information (whitespace, comments)

Scanning is Hard

- FORTRAN: Whitespace is irrelevant

DO 5 I = 1,25
DO 5 I = 1.25

Scanning is Hard

- FORTRAN: Whitespace is irrelevant

$$
\begin{aligned}
\text { DO } 5 \text { I } & =1,25 \\
\text { DO5I } & =1.25
\end{aligned}
$$

Scanning is Hard

- FORTRAN: Whitespace is irrelevant

$$
\begin{aligned}
\text { DO } 5 \text { I } & =1,25 \\
\text { DO5I } & =1.25
\end{aligned}
$$

- Can be difficult to tell when to partition input.

Scanning is Hard

- C++: Nested template declarations

vector<vector<int>> myVector

Scanning is Hard

- C++: Nested template declarations
vector < vector < int >> myVector

Scanning is Hard

- C++: Nested template declarations
(vector < (vector < (int >> myVector)))

Scanning is Hard

- C++: Nested template declarations
(vector < (vector < (int >> myVector)))
- Again, can be difficult to determine where to split.

Scanning is Hard

- PL/1: Keywords can be used as identifiers.

Scanning is Hard

- PL/1: Keywords can be used as identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Scanning is Hard

- PL/1: Keywords can be used as identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Scanning is Hard

- PL/1: Keywords can be used as identifiers.

```
IF THEN THEN THEN = ELSE; ELSE ELSE = IF
```

- Can be difficult to determine how to label lexemes.

Challenges in Scanning

- How do we determine which lexemes are associated with each token?
- When there are multiple ways we could scan the input, how do we know which one to pick?
- How do we address these concerns efficiently?

Associating Lexemes with Tokens

Lexemes and Tokens

- Tokens give a way to categorize lexemes by what information they provide.
- Some tokens might be associated with only a single lexeme:
- Tokens for keywords like if and while probably only match those lexemes exactly.
- Some tokens might be associated with lots of different lexemes:
- All variable names, all possible numbers, all possible strings, etc.

Sets of Lexemes

- Idea: Associate a set of lexemes with each token.
- We might associate the "number" token with the set $\{0,1,2, \ldots, 10,11,12, \ldots\}$
- We might associate the "string" token with the set \{ "", "a", "b", "c", ... \}
- We might associate the token for the keyword while with the set \{ while \}.

How do we describe which (potentially infinite) set of lexemes is associated with each token type?

Formal Languages

- A formal language is a set of strings.
- Many infinite languages have finite descriptions:
- Define the language using an automaton.
- Define the language using a grammar.
- Define the language using a regular expression.
- We can use these compact descriptions of the language to define sets of strings.
- Over the course of this class, we will use all of these approaches.

Regular Expressions

- Regular expressions are a family of descriptions that can be used to capture certain languages (the regular languages).
- Often provide a compact and humanreadable description of the language.
- Used as the basis for numerous software systems, including the flex tool we will use in this course.

Atomic Regular Expressions

- The regular expressions we will use in this course begin with two simple building blocks.
- The symbol $\boldsymbol{\varepsilon}$ is a regular expression matches the empty string.
- For any symbol a, the symbol a is a regular expression that just matches a.

Compound Regular Expressions

- If R_{1} and R_{2} are regular expressions, $\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{2}}$ is a regular expression represents the concatenation of the languages of R_{1} and R_{2}.
- If R_{1} and R_{2} are regular expressions, $\mathbf{R}_{\mathbf{1}} \mid \mathbf{R}_{\mathbf{2}}$ is a regular expression representing the union of R_{1} and R_{2}.
- If R is a regular expression, \mathbf{R}^{*} is a regular expression for the Kleene closure of R.
- If R is a regular expression, (\mathbf{R}) is a regular expression with the same meaning as R .

Operator Precedence

- Regular expression operator precedence is

$$
\begin{gathered}
(\mathrm{R}) \\
\mathrm{R}^{*} \\
\mathrm{R}_{1} \mathrm{R}_{2} \\
\mathrm{R}_{1} \mid \mathrm{R}_{2}
\end{gathered}
$$

- So $\mathbf{a b *} \mathbf{c} \mid \mathbf{d}$ is parsed as $\left(\left(\mathbf{a}\left(\mathbf{b}^{*}\right)\right) \mathbf{c}\right) \mid \mathbf{d}$

Simple Regular Expressions

- Suppose the only characters are 0 and 1 .
- Here is a regular expression for strings containing 00 as a substring:

$$
(0 \text { | 1)* } 00(0 \text { | 1)* }
$$

Simple Regular Expressions

- Suppose the only characters are 0 and 1 .
- Here is a regular expression for strings containing 00 as a substring:

$$
(0 \mid 1)^{*} 00(0 \mid 1)^{*}
$$

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

$$
(0 \mid 1)^{*} 00(0 \mid 1)^{*}
$$

11011100101
0000
11111011110011111

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

$$
(0 \mid 1)^{*} 00(0 \mid 1)^{*}
$$

11011100101
0000
11111011110011111

Simple Regular Expressions

- Suppose the only characters are 0 and 1 .
- Here is a regular expression for strings of length exactly four:

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

- Suppose the only characters are 0 and 1 .
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)\{4\}

0000
1010
1111
1000

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)\{4\}

0000
1010
1111
1000

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

$$
\mathbf{1}^{*}(0 \mid \varepsilon) 1^{*}
$$

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

$$
1^{*}(0 \mid \varepsilon) 1^{*}
$$

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

$$
1^{*}(0 \mid \varepsilon) 1^{*}
$$

11110111
111111
0111
0

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

$$
1^{*}(0 \mid \varepsilon) 1^{*}
$$

11110111
111111
0111
0

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:
1*0?1*

11110111
111111
0111
0

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

$$
\text { aa* }^{*}\left(. a a^{*}\right)^{*} @ \text { aa*.aa* (.aa*)* }
$$

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*
cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*
cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

$$
\mathrm{a}^{+} \text {(.aa*)* @ aa*.aa* (.aa*)* }
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

$$
\mathrm{a}^{+} \quad\left(. \mathrm{a}^{+}\right)^{*} @ \mathrm{a}^{+} . \mathrm{a}^{+} \quad\left(. \mathrm{a}^{+}\right)^{*}
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

$$
\mathrm{a}^{+} \quad\left(. \mathrm{a}^{+}\right)^{*} @ \mathrm{a}^{+} . \mathbf{a}^{+} \quad\left(. \mathrm{a}^{+}\right)^{*}
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

$$
a^{+} \quad\left(. a^{+}\right)^{*} @ \quad a^{+} \quad\left(. a^{+}\right)^{+}
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

$$
\mathrm{a}^{+}\left(. \mathrm{a}^{+}\right)^{*} @ \mathrm{a}^{+}\left(. \mathrm{a}^{+}\right)^{+}
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is
(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is
(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

> 42
> +1370
> -3248
> -9999912

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is
(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

> 42
> +1370
> -3248
> -9999912

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

> (+|-)?[0123456789]*[02468]

42
+1370
-3248
-9999912

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

$$
(+\mid-) ?[0-9]^{*}[02468]
$$

42
+1370
-3248
-9999912

Matching Regular Expressions

Implementing Regular Expressions

- Regular expressions can be implemented using finite automata.
- There are two main kinds of finite automata:
- NFAs (nondeterministic finite automata), which we'll see in a second, and
- DFAs (deterministic finite automata), which we'll see later.
- Automata are best explained by example...

A Simple Automaton

A Simple Automaton

A Simple Automaton

A Simple Automaton

" H E Y A "

A Simple Automaton

The automaton takes a string as input and decides whether to accept or reject the string.

A Simple Automaton

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Z}
$$

A Simple Automaton

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Z}
$$

A Simple Automaton

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Z}
$$

A Simple Automaton

A Simple Automaton

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Z}
$$

A Simple Automaton

" H E Y A "

A Simple Automaton

The double circle indicates that this state is an accepting state. The automaton accepts the string if it ends in an accepting state.

A Simple Automaton

" A B C

A Simple Automaton

A More Complex Automaton

011101

A More Complex Automaton

A More Complex Automaton

$\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 1\end{array}$

A More Complex Automaton

$\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 1\end{array}$

A More Complex Automaton

A More Complex Automaton

$\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 1\end{array}$

A More Complex Automaton

A More Complex Automaton

$\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 1\end{array}$

A More Complex Automaton

011101

A More Complex Automaton

$\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 1\end{array}$

A More Complex Automaton

An Even More Complex Automaton

An Even More Complex Automaton

These are called $\boldsymbol{\varepsilon}$-transitions. These transitions are followed automatically and without consuming any input.

An Even More Complex Automaton

Simulating an NFA

- Keep track of a set of states, initially the start state and everything reachable by ε-moves.
- For each character in the input:
- Maintain a set of next states, initially empty.
- For each current state:
- Follow all transitions labeled with the current letter.
- Add these states to the set of new states.
- Add every state reachable by an ε-move to the set of next states.
- Complexity: $\mathrm{O}\left(m n^{2}\right)$ for strings of length m and automata with n states.

From Regular Expressions to NFAs

- There is a (beautiful!) procedure from converting a regular expression to an NFA.
- Associate each regular expression with an NFA with the following properties:
- There is exactly one accepting state.
- There are no transitions out of the accepting state.
- There are no transitions into the starting state.
- These restrictions are stronger than necessary, but make the construction easier.

Base Cases

Automaton for ε

Automaton for single character a

Construction for $\mathrm{R}_{1} \mathrm{R}_{2}$

Construction for $\mathrm{R}_{1} \mathrm{R}_{2}$

Construction for $\mathrm{R}_{1} \mathrm{R}_{2}$

Construction for $\mathrm{R}_{1} \mathrm{R}_{2}$

Construction for $\mathrm{R}_{1} \mathrm{R}_{2}$

Construction for $\mathrm{R}_{1} \mid \mathrm{R}_{2}$

Construction for $\mathrm{R}_{1} \mid \mathrm{R}_{2}$

start

Construction for $R_{1} \mid R_{2}$

Construction for R^{*}

Construction for R^{*}

Construction for R^{*}

Construction for R^{*}

Construction for R^{*}

Construction for R^{*}

Construction for R^{*}

Overall Result

- Any regular expression of length n can be converted into an NFA with $\mathrm{O}(n)$ states.
- Can determine whether a string of length m matches a regular expression of length n in time $\mathrm{O}\left(m n^{2}\right)$.
- We'll see how to make this $\mathrm{O}(\mathrm{m})$ later (this is independent of the complexity of the regular expression!)

A Quick Diversion...

I am having some difficulty compiling a C++ program that I've written.

This program is very simple and, to the best of my knowledge, conforms to all the rules set forth in the C++ Standard. [...]

The program is as follows:

I am having some difficulty compiling a C++ program that I've written.

This program is very simple and, to the best of my knowledge, conforms to all the rules set forth in the C++ Standard. [...]

The program is as follows:

```
#include <iostream>
int main(int argc, char** argv)
{
    std::cout << "Hello World!"<<std:: endl;
    return 㫙
}
```

I am having some difficulty compiling a C++ program that I've written.

This program is very simple and, to the best of my knowledge, conforms to all the rules set forth in the C++ Standard. [...]

The program is as follows:
\#include $\langle i o s t r e a m\rangle$

$$
\begin{aligned}
& \text { int main(int argo, char**argv) } \\
& \text { std:: out <<"Hello world!" } \ll \text { std:: endl; } \\
& \} \text { return } \varnothing_{i}
\end{aligned}
$$

> g++ helloworld.png
helloworld.png: file not recognized: File format not recognized collect 2: ld returned 1 exit status

Challenges in Scanning

- How do we determine which lexemes are associated with each token?
- When there are multiple ways we could scan the input, how do we know which one to pick?
- How do we address these concerns efficiently?

Challenges in Scanning

- How do we determine which lexemes are associated with each token?
- When there are multiple ways we could scan the input, how do we know which one to pick?
- How do we address these concerns efficiently?

Lexing Ambiguities

T For
T_Identifier
for
[A-Za-z_][A-Za-z0-9_]*

Lexing Ambiguities

Lexing Ambiguities

T_For	for
T_{-}Identifier	$\left[\mathrm{A}-\mathrm{Za}-z_{_}\right]\left[\mathrm{A}-\mathrm{Za}-\mathrm{zO}-9 _\right] *$

$$
\begin{array}{l|l|l|l}
\mathrm{f} & \mathrm{o} & \mathrm{r} & \mathrm{t}
\end{array}
$$

Conflict Resolution

- Assume all tokens are specified as regular expressions.
- Algorithm: Left-to-right scan.
- Tiebreaking rule one: Maximal munch.
- Always match the longest possible prefix of the remaining text.

Lexing Ambiguities

T_For	for
T_{-}Identifier	$\left[\mathrm{A}-\mathrm{Za}-z_{_}\right]\left[\mathrm{A}-\mathrm{Za}-\mathrm{zO}-9 _\right] *$

$$
\begin{array}{l|l|l|l}
\mathrm{f} & \mathrm{o} & \mathrm{r} & \mathrm{t}
\end{array}
$$

Lexing Ambiguities

T For
for
T_Identifier
[A-Za-z_][A-Za-z0-9_]*

Implementing Maximal Munch

- Given a set of regular expressions, how can we use them to implement maximum munch?
- Idea:
- Convert expressions to NFAs.
- Run all NFAs in parallel, keeping track of the last match.
- When all automata get stuck, report the last match and restart the search at that point.

Implementing Maximal Munch

T Do
T Double
T_Mystery

do
double
[A-Za-z]

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

D $\mathrm{O} \left\lvert\,$| | U | B | D | O | U | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | L\right. E

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

D $\mathrm{O} \left\lvert\,$| | U | B | D | O | U | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | L\right. E

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

T

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

$$
\begin{aligned}
& \text { U B D D O U B L E } \\
& \\
&
\end{aligned}
$$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

$$
\begin{aligned}
& \text { U B B D O U B L E } \\
& \\
&
\end{aligned}
$$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[A-Z a-z]$

Implementing Maximal Munch

T_Do	do
T_Double	double
T_Mystery	$[\mathrm{A}-\mathrm{Za}-\mathrm{z}]$

A Minor Simplification

A Minor Simplification

A Minor Simplification

A Minor Simplification

A Minor Simplification

Build a single automaton
that runs all the matching automata in parallel.

A Minor Simplification

A Minor Simplification

Annotate each accepting state with which automaton it came from.

Other Conflicts

T -Do	do
T -Double	double
T _Identifier	$\left[\mathrm{A}-\mathrm{Za}-\mathrm{Z}_{_}\right]\left[\mathrm{A}-\mathrm{Za}-\mathrm{zO}-\right.$ - $\left._{\ldots}\right] *$

Other Conflicts

T _Do	do
T _Double	double
T _Identifier	$\left[\mathrm{A}-\mathrm{Za}-\mathrm{z}_{_}\right]\left[\mathrm{A}-\mathrm{Za}-\mathrm{zO}-9 _\right] *$

$$
\begin{array}{l|l|l|l|l|l|}
\mathrm{d} & \mathrm{o} & \mathrm{u} & \mathrm{~b} & \mathrm{l} & \mathrm{e} \\
\hline
\end{array}
$$

Other Conflicts

T _Do	do
T _Double	double
T _Identifier	$\left[\mathrm{A}-\mathrm{Za}-\mathrm{z}_{_}\right]\left[\mathrm{A}-\mathrm{Za}-\mathrm{zO}-9 _\right] *$

\section*{| d | o | u | b | 1 |
| :--- | :--- | :--- | :--- | :--- |}

More Tiebreaking

- When two regular expressions apply, choose the one with the greater "priority."
- Simple priority system: pick the rule that was defined first.

Other Conflicts

T _Do	do
T _Double	double
T _Identifier	$\left[\mathrm{A}-\mathrm{Za}-\mathrm{z}_{_}\right]\left[\mathrm{A}-\mathrm{Za}-\mathrm{zO}-9 _\right] *$

\section*{| d | o | u | b | 1 |
| :--- | :--- | :--- | :--- | :--- |}

Other Conflicts

T _Do	do
T _Double	double
T _Identifier	$\left[\mathrm{A}-\mathrm{Za}-\mathrm{z}_{_}\right]\left[\mathrm{A}-\mathrm{Za}-\mathrm{zO}-9 _\right] *$

\section*{| d | o | u | b | l | e |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Other Conflicts

\section*{| d | o | u | b | 1 |
| :--- | :--- | :--- | :--- | :--- |
| l | | | | |}

Why isn't
this a problem?

One Last Detail...

- We know what to do if multiple rules match.
- What if nothing matches?
- Trick: Add a "catch-all" rule that matches any character and reports an error.

Summary of Conflict Resolution

- Construct an automaton for each regular expression.
- Merge them into one automaton by adding a new start state.
- Scan the input, keeping track of the last known match.
- Break ties by choosing higherprecedence matches.
- Have a catch-all rule to handle errors.

Challenges in Scanning

- How do we determine which lexemes are associated with each token?
- When there are multiple ways we could scan the input, how do we know which one to pick?
- How do we address these concerns efficiently?

Challenges in Scanning

- How do we determine which lexemes are associated with each token?
- When there are multiple ways we could scan the input, how do we know which one to pick?
- How do we address these concerns efficiently?

DFAs

- The automata we've seen so far have all been NFAs.
- A DFA is like an NFA, but with tighter restrictions:
- Every state must have exactly one transition defined for every letter.
- ε-moves are not allowed.

A Sample DFA

A Sample DFA

A Sample DFA

A Sample DFA

Code for DFAs

int kTransitionTable[kNumStates][kNumSymbols] = \{ \{0, 0, 1, 3, 7, 1, ...\},
\};
bool kAcceptTable[kNumStates] = \{ false, true, true,
\};
bool simulateDFA(string input) \{
int state = 0;
for (char ch: input) state = kTransitionTable[state][ch]; return kAcceptTable[state];

Code for DFAs

int kTransitionTable[kNumStates][kNumSymbols] = \{ \{0, 0, 1, 3, 7, 1, ...\},
\};
dol kAcceptTable[kNumStates] = \{ false, true, true,

```
Runs in time O(m)
    on a string of
    length m.
```


\};

boot simulateDFA(string input) \{ int state = 0;
for (char ch: input)
state = kTransitionTable[state][ch]; return kAcceptTable[state];

Speeding up Matching

- In the worst-case, an NFA with n states takes time $\mathrm{O}\left(m n^{2}\right)$ to match a string of length m.
- DFAs, on the other hand, take only $\mathrm{O}(m)$.
- There is another (beautiful!) algorithm to convert NFAs to DFAs.

Subset Construction

- NFAs can be in many states at once, while DFAs can only be in a single state at a time.
- Key idea: Make the DFA simulate the NFA.
- Have the states of the DFA correspond to the sets of states of the NFA.
- Transitions between states of DFA correspond to transitions between sets of states in the NFA.

From NFA to DFA

From NFA to DFA

From NFA to DFA

From NFA to DFA

start $0,1,4,11$

From NFA to DFA

start $0,1,4,11$

From NFA to DFA

start $0,1,4,11 \xrightarrow{d} 2,5,12$

From NFA to DFA

start $0,1,4,11 \xrightarrow{d} 2,5,12$

From NFA to DFA

$$
\text { start } 0,1,4,11 \xrightarrow{d}-2,12
$$

From NFA to DFA

start $0,1,4,11 \xrightarrow{d} 2,5,12$

From NFA to DFA

From NFA to DFA

From NFA to DFA

From NFA to DFA

From NFA to DFA

From NFA to DFA

Modified Subset Construction

- Instead of marking whether a state is accepting, remember which token type it matches.
- Break ties with priorities.
- When using DFA as a scanner, consider the DFA "stuck" if it enters the state corresponding to the empty set.

Performance Concerns

- The NFA-to-DFA construction can introduce exponentially many states.
- Time/memory tradeoff:
- Low-memory NFA has higher scan time.
- High-memory DFA has lower scan time.
- Could use a hybrid approach by simplifying NFA before generating code.

Real-World Scanning: Python

while (ip $<z$)
++ip;

Python Blocks

- Scoping handled by whitespace:

$$
\begin{aligned}
\text { if } \mathrm{w}= & =\mathrm{z}: \\
\mathrm{a} & =\mathrm{b} \\
\mathrm{c} & =\mathrm{d} \\
\text { else }: & \\
e & =\mathrm{f} \\
\mathrm{~g}=\mathrm{h} &
\end{aligned}
$$

-What does that mean for the scanner?

Whitespace Tokens

- Special tokens inserted to indicate changes in levels of indentation.
- NEWLINE marks the end of a line.
- INDENT indicates an increase in indentation.
- DEDENT indicates a decrease in indentation.
- Note that INDENT and DEDENT encode change in indentation, not the total amount of indentation.

Scanning Python

$$
\begin{aligned}
\text { if } \mathrm{w}= & =\mathrm{z}: \\
\mathrm{a} & =\mathrm{b} \\
\mathrm{c} & =\mathrm{d} \\
\text { else }: & \\
\mathrm{e} & =\mathrm{f} \\
\mathrm{~g}=\mathrm{h} &
\end{aligned}
$$

Scanning Python

Scanning Python

Scanning Python

ident
g
:---:
h

Where to INDENT/DEDENT?

- Scanner maintains a stack of line indentations keeping track of all indented contexts so far.
- Initially, this stack contains 0 , since initially the contents of the file aren't indented.
- On a newline:
- See how much whitespace is at the start of the line.
- If this value exceeds the top of the stack:
- Push the value onto the stack.
- Emit an INDENT token.
- Otherwise, while the value is less than the top of the stack:
- Pop the stack.
- Emit a DEDENT token.

Interesting Observation

- Normally, more text on a line translates into more tokens.
- With DEDENT, less text on a line often means more tokens:

```
if condl:
    if cond2:
    if cond3:
        if cond4:
        if cond5:
                                statementI
statement2
```


Summary

- Lexical analysis splits input text into tokens holding a lexeme and an attribute.
- Lexemes are sets of strings often defined with regular expressions.
- Regular expressions can be converted to NFAs and from there to DFAs.
- Maximal-munch using an automaton allows for fast scanning.
- Not all tokens come directly from the source code.

Next Time

