

Lexical Analysis

Announcements

● Programming Assignment 1 Out
● Due Monday, July 9 at 11:59 PM.

● Four handouts (all available online):
● Decaf Specification
● Lexical Analysis
● Intro to flex
● Programming Assignment 1

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

while (ip < z)
 ++ip;

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

While

++

Ident

<

Ident Ident

ip z ip

do[for] = new 0;

do[for] = new 0;

d o [f] n e w 0 ;=o r

do[for] = new 0;

T_Do [T_For T_New T_IntConst

0

d o [f] n e w 0 ;=o r

] =

do[for] = new 0;

T_Do [T_For T_New T_IntConst

0

d o [f] n e w 0 ;=o r

] =

Scanning a Source File
w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File
w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File
w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File
w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File
w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File
w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File
w h i l e (i < z) \n \t + i p ;p + +(1 < i) \n \t + i ;3 + +7

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

This is called a token. You can
think of it as an enumerated type
representing what logical entity we
read out of the source code.

This is called a token. You can
think of it as an enumerated type
representing what logical entity we
read out of the source code.

The piece of the original program
from which we made the token is

called a lexeme.

The piece of the original program
from which we made the token is

called a lexeme.

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Sometimes we will discard a lexeme
rather than storing it for later use.
Here, we ignore whitespace, since it
has no bearing on the meaning of

the program.

Sometimes we will discard a lexeme
rather than storing it for later use.
Here, we ignore whitespace, since it
has no bearing on the meaning of

the program.

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(T_IntConst

137

Scanning a Source File
w h i l e (1 < i) \n \t + i ;3 + +

T_While

7

(T_IntConst

137

Some tokens can have
attributes that store
extra information about
the token. Here we
store which integer is

represented.

Some tokens can have
attributes that store
extra information about
the token. Here we
store which integer is

represented.

Goals of Lexical Analysis

● Convert from physical description of a program
into sequence of of tokens.
● Each token represents one logical piece of the source

file – a keyword, the name of a variable, etc.

● Each token is associated with a lexeme.
● The actual text of the token: “137,” “int,” etc.

● Each token may have optional attributes.
● Extra information derived from the text – perhaps a

numeric value.

● The token sequence will be used in the parser to
recover the program structure.

Choosing Tokens

What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
 cout << k << endl;
}

What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
 cout << k << endl;
}

for {
int }
<< ;
= <
([
)]
++

What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
 cout << k << endl;
}

for {
int }
<< ;
= <
([
)]
++

Identifier
IntegerConstant

Choosing Good Tokens

● Very much dependent on the language.
● Typically:

● Give keywords their own tokens.
● Give different punctuation symbols their own

tokens.
● Group lexemes representing identifiers,

numeric constants, strings, etc. into their own
groups.

● Discard irrelevant information (whitespace,
comments)

Scanning is Hard

● FORTRAN: Whitespace is irrelevant

DO 5 I = 1,25

DO 5 I = 1.25

Thanks to Prof. Alex Aiken

Scanning is Hard

● FORTRAN: Whitespace is irrelevant

DO 5 I = 1,25

 DO5I = 1.25

Thanks to Prof. Alex Aiken

Scanning is Hard

● FORTRAN: Whitespace is irrelevant

DO 5 I = 1,25

 DO5I = 1.25

● Can be difficult to tell when to partition

input.

Thanks to Prof. Alex Aiken

Scanning is Hard

● C++: Nested template declarations

vector<vector<int>> myVector

Thanks to Prof. Alex Aiken

Scanning is Hard

● C++: Nested template declarations

vector < vector < int >> myVector

Thanks to Prof. Alex Aiken

Scanning is Hard

● C++: Nested template declarations

(vector < (vector < (int >> myVector)))

Thanks to Prof. Alex Aiken

Scanning is Hard

● C++: Nested template declarations

(vector < (vector < (int >> myVector)))

● Again, can be difficult to determine
where to split.

Thanks to Prof. Alex Aiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

Thanks to Prof. Alex Aiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Thanks to Prof. Alex Aiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Thanks to Prof. Alex Aiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

● Can be difficult to determine how to label
lexemes.

Thanks to Prof. Alex Aiken

Challenges in Scanning

● How do we determine which lexemes are
associated with each token?

● When there are multiple ways we could
scan the input, how do we know which
one to pick?

● How do we address these concerns
efficiently?

Associating Lexemes with Tokens

Lexemes and Tokens

● Tokens give a way to categorize lexemes by
what information they provide.

● Some tokens might be associated with only a
single lexeme:
● Tokens for keywords like if and while probably

only match those lexemes exactly.
● Some tokens might be associated with lots of

different lexemes:
● All variable names, all possible numbers, all

possible strings, etc.

Sets of Lexemes

● Idea: Associate a set of lexemes with each
token.

● We might associate the “number” token
with the set { 0, 1, 2, …, 10, 11, 12, … }

● We might associate the “string” token
with the set { "", "a", "b", "c", … }

● We might associate the token for the
keyword while with the set { while }.

How do we describe which (potentially
infinite) set of lexemes is associated with

each token type?

Formal Languages

● A formal language is a set of strings.
● Many infinite languages have finite descriptions:

● Define the language using an automaton.
● Define the language using a grammar.
● Define the language using a regular expression.

● We can use these compact descriptions of the
language to define sets of strings.

● Over the course of this class, we will use all of
these approaches.

Regular Expressions

● Regular expressions are a family of
descriptions that can be used to capture
certain languages (the regular
languages).

● Often provide a compact and human-
readable description of the language.

● Used as the basis for numerous software
systems, including the flex tool we will
use in this course.

Atomic Regular Expressions

● The regular expressions we will use in
this course begin with two simple
building blocks.

● The symbol ε is a regular expression
matches the empty string.

● For any symbol a, the symbol a is a
regular expression that just matches a.

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a regular
expression represents the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 | R2 is a regular
expression representing the union of R1 and R2.

● If R is a regular expression, R* is a regular expression for
the Kleene closure of R.

● If R is a regular expression, (R) is a regular expression
with the same meaning as R.

Operator Precedence

● Regular expression operator precedence
is

(R)

R*

R1R2

R1 | R2

● So ab*c|d is parsed as ((a(b*))c)|d

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings of length
exactly four:

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings of length
exactly four:

(0|1){4}

0000
1010
1111
1000

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings of length
exactly four:

(0|1){4}

0000
1010
1111
1000

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that
contain at most one zero:

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0

Simple Regular Expressions

● Suppose the only characters are 0 and 1.

● Here is a regular expression for strings that
contain at most one zero:

1*0?1*

11110111
111111
0111

0

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

aa* (.aa*)* aa*.aa*@ (.aa*)*

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

aa* (.aa*)* aa*.aa*@ (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

aa* (.aa*)* aa*.aa*@ (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

aa* (.aa*)* aa*.aa*@ (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

aa* (.aa*)* aa*.aa*@ (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

a+ (.aa*)* aa*.aa*@ (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

a+ (.a+)* a+.a+@ (.a+)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

a+ (.a+)* a+.a+@ (.a+)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

a+ (.a+)* a+@ (.a+)+

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Applied Regular Expressions

● Suppose our alphabet is a, @, and ., where a
represents “some letter.”

● A regular expression for email addresses is

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

a+(.a+)*@a+(.a+)+

Applied Regular Expressions

● Suppose that our alphabet is all ASCII
characters.

● A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

Applied Regular Expressions

● Suppose that our alphabet is all ASCII
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

Applied Regular Expressions

● Suppose that our alphabet is all ASCII
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

Applied Regular Expressions

● Suppose that our alphabet is all ASCII
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?[0123456789]*[02468]

Applied Regular Expressions

● Suppose that our alphabet is all ASCII
characters.

● A regular expression for even numbers is

42
+1370
-3248

-9999912

(+|-)?[0-9]*[02468]

Matching Regular Expressions

Implementing Regular Expressions

● Regular expressions can be implemented
using finite automata.

● There are two main kinds of finite
automata:
● NFAs (nondeterministic finite automata),

which we'll see in a second, and
● DFAs (deterministic finite automata), which

we'll see later.

● Automata are best explained by example...

" "start

A,B,C,...,Z

A Simple Automaton

" "start

A,B,C,...,Z

Each circle is a state of the
automaton. The automaton's
configuration is determined
by what state(s) it is in.

Each circle is a state of the
automaton. The automaton's
configuration is determined
by what state(s) it is in.

A Simple Automaton

" "start

A,B,C,...,Z

These arrows are called
transitions. The automaton
changes which state(s) it is in

by following transitions.

These arrows are called
transitions. The automaton
changes which state(s) it is in

by following transitions.

A Simple Automaton

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

The automaton takes a string
as input and decides whether

to accept or reject the string.

The automaton takes a string
as input and decides whether

to accept or reject the string.

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "
The double circle indicates that this
state is an accepting state. The
automaton accepts the string if it

ends in an accepting state.

The double circle indicates that this
state is an accepting state. The
automaton accepts the string if it

ends in an accepting state.

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

There is no transition on "
here, so the automaton

dies and rejects.

There is no transition on "
here, so the automaton

dies and rejects.

" "start

A,B,C,...,Z

A Simple Automaton

" " " " " "

There is no transition on "
here, so the automaton

dies and rejects.

There is no transition on "
here, so the automaton

dies and rejects.

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

" "start

A,B,C,...,Z

A Simple Automaton

" A B C

This is not an accepting
state, so the automaton

rejects.

This is not an accepting
state, so the automaton

rejects.

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

Notice that there are multiple transitions
defined here on 0 and 1. If we read a
0 or 1 here, we follow both transitions

and enter multiple states.

Notice that there are multiple transitions
defined here on 0 and 1. If we read a
0 or 1 here, we follow both transitions

and enter multiple states.

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1

A More Complex Automaton

0
1 0

1
0 1

start
 0, 1

0 1 1 1 0 1
Since we are in at least
one accepting state, the

automaton accepts.

Since we are in at least
one accepting state, the

automaton accepts.

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

These are called -transitionsε . These
transitions are followed automatically and

without consuming any input.

These are called -transitionsε . These
transitions are followed automatically and

without consuming any input.

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

Simulating an NFA

● Keep track of a set of states, initially the start
state and everything reachable by ε-moves.

● For each character in the input:
● Maintain a set of next states, initially empty.
● For each current state:

– Follow all transitions labeled with the current letter.
– Add these states to the set of new states.

● Add every state reachable by an ε-move to the set of
next states.

● Complexity: O(mn2) for strings of length m and
automata with n states.

From Regular Expressions to NFAs

● There is a (beautiful!) procedure from converting a
regular expression to an NFA.

● Associate each regular expression with an NFA with
the following properties:

● There is exactly one accepting state.

● There are no transitions out of the accepting state.

● There are no transitions into the starting state.

● These restrictions are stronger than necessary, but make the
construction easier.

start

Base Cases

εstart

Automaton for ε

astart

Automaton for single character a

Construction for R1R2

R
1

Construction for R1R2

R
2

start start

R
1

Construction for R1R2

R
2

start

R
1

Construction for R1R2

R
2

start
ε

R
1

Construction for R1R2

R
2

start
ε

Construction for R1 | R2

Construction for R1 | R2

R
2

start

R
1

start

Construction for R1 | R2

R
2

start

R
1

start

start

Construction for R1 | R2

R
2

R
1start

ε

ε

Construction for R1 | R2

R
2

R
1start

ε

ε

Construction for R1 | R2

R
2

R
1start

ε

ε

ε

ε

Construction for R1 | R2

R
2

R
1start

ε

ε

ε

ε

Construction for R*

Construction for R*

R

start

Construction for R*

R

start
start

Construction for R*

R

start
start

ε

Construction for R*

R

start ε ε

ε

Construction for R*

R

start ε ε

ε

ε

Construction for R*

R

start

ε

ε ε

ε

Overall Result

● Any regular expression of length n can
be converted into an NFA with O(n)
states.

● Can determine whether a string of length
m matches a regular expression of length
n in time O(mn2).

● We'll see how to make this O(m) later
(this is independent of the complexity of
the regular expression!)

A Quick Diversion...

I am having some difficulty compiling a C++ program that I've
written.

This program is very simple and, to the best of my knowledge,
conforms to all the rules set forth in the C++ Standard. [...]

The program is as follows:

Source:
http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers

http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers

I am having some difficulty compiling a C++ program that I've
written.

This program is very simple and, to the best of my knowledge,
conforms to all the rules set forth in the C++ Standard. [...]

The program is as follows:

Source:
http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers

http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers

I am having some difficulty compiling a C++ program that I've
written.

This program is very simple and, to the best of my knowledge,
conforms to all the rules set forth in the C++ Standard. [...]

The program is as follows:

Source:
http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers

> g++ helloworld.png
helloworld.png: file not recognized: File format not recognized
collect2: ld returned 1 exit status

http://stackoverflow.com/questions/5508110/why-is-this-program-erroneously-rejected-by-three-c-compilers

Challenges in Scanning

● How do we determine which lexemes are
associated with each token?

● When there are multiple ways we could
scan the input, how do we know which
one to pick?

● How do we address these concerns
efficiently?

Challenges in Scanning

● How do we determine which lexemes are
associated with each token?

● When there are multiple ways we could
scan the input, how do we know which
one to pick?

● How do we address these concerns
efficiently?

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr
f o tr
f o tr
f o tr
f o tr

f o tr
f o tr
f o tr
f o tr

Conflict Resolution

● Assume all tokens are specified as
regular expressions.

● Algorithm: Left-to-right scan.
● Tiebreaking rule one: Maximal munch.

● Always match the longest possible prefix of
the remaining text.

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr
f o tr
f o tr
f o tr
f o tr

f o tr
f o tr
f o tr
f o tr

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr

Implementing Maximal Munch

● Given a set of regular expressions, how
can we use them to implement maximum
munch?

● Idea:
● Convert expressions to NFAs.
● Run all NFAs in parallel, keeping track of the

last match.
● When all automata get stuck, report the last

match and restart the search at that point.

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

A Minor Simplification

A Minor Simplification

start d o

start d o u b l e

start Σ

A Minor Simplification

start d o

start d o u b l e

start Σ

A Minor Simplification

d o

d o u b l e

Σ

 ε

ε

 ε
start

A Minor Simplification

d o

d o u b l e

Σ

 ε

ε

 ε
start

 Build a single automaton
that runs all the matching

automata in parallel.

Build a single automaton
that runs all the matching

automata in parallel.

A Minor Simplification

d o

d o u b l e

Σ

 ε

ε

 ε
start

A Minor Simplification

d o

d o u b l e

Σ

 ε

ε

 ε
start

 Annotate each accepting
state with which automaton

it came from.

Annotate each accepting
state with which automaton

it came from.

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el
d o bu el

More Tiebreaking

● When two regular expressions apply,
choose the one with the greater
“priority.”

● Simple priority system: pick the rule
that was defined first.

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el
d o bu el

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el
Why isn't
this a

problem?

One Last Detail...

● We know what to do if multiple rules
match.

● What if nothing matches?
● Trick: Add a “catch-all” rule that matches

any character and reports an error.

Summary of Conflict Resolution

● Construct an automaton for each regular
expression.

● Merge them into one automaton by
adding a new start state.

● Scan the input, keeping track of the last
known match.

● Break ties by choosing higher-
precedence matches.

● Have a catch-all rule to handle errors.

Challenges in Scanning

● How do we determine which lexemes are
associated with each token?

● When there are multiple ways we could
scan the input, how do we know which
one to pick?

● How do we address these concerns
efficiently?

Challenges in Scanning

● How do we determine which lexemes are
associated with each token?

● When there are multiple ways we could
scan the input, how do we know which
one to pick?

● How do we address these concerns
efficiently?

DFAs

● The automata we've seen so far have all
been NFAs.

● A DFA is like an NFA, but with tighter
restrictions:
● Every state must have exactly one

transition defined for every letter.
● ε-moves are not allowed.

A Sample DFA

A Sample DFA

start

0 0

1

0

1

 0

1

1

A Sample DFA

D

start

0 0

1

0

1

 0

1

A

C

B
1

A

A

B

B

C

C

D

D

A Sample DFA

D

start

0 0

1

0

1

 0

1

A

C

B
1

A

B

C

D

0 1

Code for DFAs
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool simulateDFA(string input) {
 int state = 0;
 for (char ch: input)
 state = kTransitionTable[state][ch];
 return kAcceptTable[state];
}

Code for DFAs
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool simulateDFA(string input) {
 int state = 0;
 for (char ch: input)
 state = kTransitionTable[state][ch];
 return kAcceptTable[state];
}

Runs in time O(m)
on a string of

length m.

Runs in time O(m)
on a string of

length m.

Speeding up Matching

● In the worst-case, an NFA with n states
takes time O(mn2) to match a string of
length m.

● DFAs, on the other hand, take only O(m).
● There is another (beautiful!) algorithm to

convert NFAs to DFAs.

Lexical
Specification

Regular
Expressions NFA DFA

Table-Driven
DFA

Subset Construction

● NFAs can be in many states at once, while
DFAs can only be in a single state at a time.

● Key idea: Make the DFA simulate the
NFA.

● Have the states of the DFA correspond to
the sets of states of the NFA.

● Transitions between states of DFA
correspond to transitions between sets of
states in the NFA.

From NFA to DFA

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

12

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

12

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

12

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

12

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

3, 6
o

3, 6

12

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

3, 6
o

3, 6

12

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

3, 6
o

3, 6 7 8 9 1010
u b l e

12

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

3, 6
o

3, 6 7 8 9 1010
u b l e

Σ

Σ – o
Σ – u Σ – b Σ – l Σ – e

 Σ

 Σ

12

From NFA to DFA

1 2 3
d o

4 5 6
d o

7
u

8
b

9
l

10
e

11 12
Σ

0

 ε

ε

 ε
start

0, 1, 4, 11start

2, 5, 122, 5, 12
d

12

Σ – d

3, 6
o

3, 6 7 8 9 1010
u b l e

Σ

Σ – o
Σ – u Σ – b Σ – l Σ – e

 Σ

 Σ

12

Modified Subset Construction

● Instead of marking whether a state is
accepting, remember which token type it
matches.

● Break ties with priorities.
● When using DFA as a scanner, consider

the DFA “stuck” if it enters the state
corresponding to the empty set.

Performance Concerns

● The NFA-to-DFA construction can
introduce exponentially many states.

● Time/memory tradeoff:
● Low-memory NFA has higher scan time.
● High-memory DFA has lower scan time.

● Could use a hybrid approach by
simplifying NFA before generating code.

Real-World Scanning: Python

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

While

++

Ident

<

Ident Ident

ip z ip

Python Blocks

● Scoping handled by whitespace:
if w == z:

 a = b

 c = d

else:

 e = f

g = h

● What does that mean for the scanner?

Whitespace Tokens

● Special tokens inserted to indicate changes in
levels of indentation.

● NEWLINE marks the end of a line.
● INDENT indicates an increase in

indentation.
● DEDENT indicates a decrease in indentation.
● Note that INDENT and DEDENT encode

change in indentation, not the total amount of
indentation.

if w == z:
 a = b
 c = d
else:
 e = f
g = h

Scanning Python

if w == z:
 a = b
 c = d
else:
 e = f
g = h

if ident

w

== ident

z

: NEWLINE

INDENT ident

a

= ident

b

NEWLINE

ident

c

= ident

d

NEWLINE

DEDENT else :

INDENT ident

e

= ident

f

NEWLINE

DEDENT ident

g

= ident

h

NEWLINE

Scanning Python

NEWLINE

if w == z: {
 a = b;
 c = d;
} else {
 e = f;
}
g = h;

if ident

w

== ident

z

: NEWLINE

INDENT ident

a

= ident

b

NEWLINE

ident

c

= ident

d

NEWLINE

DEDENT else :

INDENT ident

e

= ident

f

NEWLINE

DEDENT ident

g

= ident

h

NEWLINE

Scanning Python

NEWLINE

if w == z: {
 a = b;
 c = d;
} else {
 e = f;
}
g = h;

if ident

w

== ident

z

:

{ ident

a

= ident

b

;

ident

c

= ident

d

;

} else :

ident

e

= ident

f

;

} ident

g

= ident

h

;

Scanning Python

{

Where to INDENT/DEDENT?

● Scanner maintains a stack of line indentations
keeping track of all indented contexts so far.

● Initially, this stack contains 0, since initially the
contents of the file aren't indented.

● On a newline:
● See how much whitespace is at the start of the line.
● If this value exceeds the top of the stack:

– Push the value onto the stack.
– Emit an INDENT token.

● Otherwise, while the value is less than the top of the stack:
– Pop the stack.
– Emit a DEDENT token.

Source: http://docs.python.org/reference/lexical_analysis.html

http://docs.python.org/reference/lexical_analysis.html

Interesting Observation

● Normally, more text on a line translates
into more tokens.

● With DEDENT, less text on a line often
means more tokens:

if cond1:
 if cond2:
 if cond3:
 if cond4:
 if cond5:
 statement1
statement2

Summary

● Lexical analysis splits input text into tokens
holding a lexeme and an attribute.

● Lexemes are sets of strings often defined
with regular expressions.

● Regular expressions can be converted to
NFAs and from there to DFAs.

● Maximal-munch using an automaton allows
for fast scanning.

● Not all tokens come directly from the source
code.

Next Time

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

(Plus a little bit here)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301

